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Our Mission

The Kentucky Geological Survey is a state-supported research center and
public resource within the University of Kentucky. Our mission is to
support sustainable prosperity of the commonwealth, the vitality of its
flagship university, and the welfare of its people. We do this by conducting
research and providing unbiased information about geologic resources,
environmental issues, and natural hazards affecting Kentucky.

Technical Level

General Intermediate Technical

Statement of Benefit to Kentucky

Computer models based on topography, soil properties, and
water levels in hillsides can help identify areas susceptible to
landslides triggered by rainstorms or human activity like logging,
mining, or construction. This study compares results from one
computer model, called PISA-m, using different kinds of soil
property information to known landslide locations in parts of
eastern Kentucky to evaluate the effectiveness of the model.
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Abstract

Physics-based landslide modeling can be difficult and data-intensive. Generating high-
quality and practical map results is often not feasible outside of small, thoroughly char-
acterized study areas. Using the physics-based program Probabilistic Infinite Slope
Analysis (PISA-m), users can perform expedient assessments of landslide hazard over
large study areas where comprehensive geotechnical data may be lacking, but other data
inputs are robust. PISA-m uses an infinite slope equation and spatial layers, such as a
digital elevation model (DEM), a lidar-derived forest cover layer, and a soil map, to
calculate the probability that the factor of safety (or FS) for an area will be less than or
equal to one. Factor of safety values less than or equal to one often infer slope instabil-
ity. This investigation considers two landslide inventories, one reflecting the assumed
background climatic conditions seen over a decade and the other gathered following an
extreme rainfall event. These two weather scenarios were approximated with parameter
specifications and used over four models based on different soil unit inputs: shale beds
with alluvium and colluvium, 1:24,000 scale bedrock formations, United Soil Classifi-
cation System (USCS) distributions with geotechnical values derived from drilling re-
ports, and USCS distributions with generalized geotechnical values. Model results were
symbolized as five susceptibility groups based on equal intervals of the probability of
FS < 1. The model results were compared to landslides that post-date the lidar DEM
and non-landslide locations to evaluate the program’s accuracy as a regional landslide
susceptibility tool. PISA-m results indicating a high probability (0.50-1.0) of FS <1
around a landslide were considered true positives, while lower probabilities (0-0.50)
for non-landslide areas were considered true negatives. Model accuracies varied across
the models and study areas, averaging 78% for the background climatic conditions
proxy and 82% for the extreme rainfall event area, with the best model accuracy of 84%
for the shale bed case in the extreme event specifications. While these practical, first-
order landslide susceptibility model results are promising, these outcomes rely on ef-
fective use of high-resolution input data and expert knowledge of ground
characterization to bolster the lack of precise geotechnical descriptions.
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Introduction

In Kentucky, landslides are estimated to directly cost
$20 million a year (Crawford, 2014; Overfield et al.,
2015), with indirect costs likely greater. To assist in
landslide hazard avoidance and mitigation, landslide
susceptibility models are created. Approaches for sus-
ceptibility modeling are broadly classified as either sta-
tistics based or physics based (Soeters and Westen,
1996; Crozier and Glade, 2005). Statistical models typ-
ically leverage geomorphic conditioning factors to pre-
dict landslide probability (Reichenbach et al., 2018).
Alternatively, physics-based models couple geotech-
nical parameters of the soil and rock with slope stability
and hydrological relationships to calculate metrics such
as factor of safety based on the force balance acting on
the slope (Formetta et al., 2016). Recent literature sug-
gests that these distinct modeling approaches can be
combined as two-step assessments, leveraging statisti-
cal models as inputs for physics-based models and vice-
versa (Khabiri et al., 2023). Furthermore, these models
can be classified as either deterministic or probabilistic,
with empirical and rational subdivisions for both model
classes. Deterministic models have distinguishable, set
outcomes produced using known physical parameters
and either rational governing equations or empirical re-
lationships, whereas probabilistic models are used to
address random behavior in any of these physical pa-
rameters (Haneberg, 2000). The probabilistic modeling
approach is suitable for landslide susceptibility analysis
when a rational equation can be used to describe the
slope failure mechanics, but precise input variable char-
acteristics are not well known.

Statistical landslide susceptibility models are often used
in contemporary landslide susceptibility studies (Reich-
enbach et al., 2018; Crawford et al., 2021). These ap-
proaches often require an inventory dataset, advanced
GIS technology, and machine learning tools. In addi-
tion, models created from these approaches are often
considered “black boxes,” making them unwieldy and
difficult for researchers and end users to interpret. On
the other hand, physics-based slope stability models are
more interpretable and have been created for a wide
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variety of use cases (Montgomery and Dietrich, 1994;
Wu and Sidle, 1995; Pack et al., 1998; Baum et al.,
2008; Capparelli and Versace, 2011). However, many
physics-based modeling programs require comprehen-
sive geotechnical parameters, which can limit assess-
ments to small watershed-scale investigations (Soeters
and Westen, 1996). Most of these models do not ac-
count for parameter uncertainty and variability, with
only a few exceptions (Pack et al., 1998; Haneberg,
2007). While the geotechnical parameter requirement
exists universally in physics-based models, calculating
probabilities using a range of geotechnical parameters
can both account for natural variability inherent in the
landscape and address the lack of precise geotechnical
values. Despite these potential limitations, physics-
based models with landslide susceptibility presented in
engineering terms like factor of safety are easy to inter-
pret and understand, making them appealing to a wide
variety of mitigation managers and engineers. The ad-
ditional benefit of selecting a probabilistic and physics-
based modeling approach over a strictly deterministic
approach is the ability to approximate the probability of
factor of safety results as landslide susceptibility mod-
els. The aim of this study was to assess limited geotech-
nical parameters within the modeling program
Probabilistic Infinite Slope Analysis (PISA-m). Addi-
tionally, PISA-m was evaluated for practicality at a re-
gional scale, and the inherent challenges of parameter
uncertainty were addressed. To evaluate model accu-
racy, PISA-m results were compared to known land-
slide occurrences from two landslide point inventories.

Study Area

The primary study area, referred to as location 1, was
defined as a band stretching across portions of four east-
ern Kentucky counties in which a rapid reconnaissance
landslide inventory was performed following the July
2022 extreme rainfall and flooding event (Crawford et
al., 2023; NWS, 2023; Fig. 1). The area comprising lo-
cation 1 was defined by the extent of an extreme pre-
cipitation event in July 2022 and covers ~1250
km? (480 mi?) in Breathitt, Knott, Owsley, and Perry
counties.
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Figure 1. Location 1, defined as the approximate area affected by an extreme rainfall event in July 2022. For this location,
results were generated with parameter specifications that approximated background climatic conditions and utilized a rec-
orded historic landslide inventory for assessment (Crawford, 2022). Additionally, a second parameter specification approx-
imated an extreme rainfall event and used the rapid reconnaissance landslide inventory corresponding to the July 2022
rainfall event (Crawford et al., 2023). Yellow squares denote insets used in Figures 4, 6, and 7.
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Figure 2. Location 2, the study area defined as the extent of
Magoffin County, Kentucky. For this location, results were
generated with a parameter specification that modeled back-
ground climatic conditions and used a historic landslide in-
ventory (Crawford, 2022).

Location 1 has an average slope of 21.8°. This area was
selected based on known landslide occurrences and the
availability of landslide inventories with known failure
dates that occurred after the collection of digital eleva-
tion model (DEM) ground data. A second study area
was included to add to the background climatic condi-
tion landslides counts and test PISA-m’s utility at the
county scale. This study area, known as location 2, was
defined as the extent of Magoffin County (Fig. 2),
which was selected in part because of the digitized land-
slide inventory present in the area (Crawford et al.,
2021). Location 2 covers ~881 km? (310 mi?) and has
an average slope of 21.4°. The topography of both study
areas is characterized by steep, narrow, sinuous valleys
carved by unglaciated, dendritic fluvial systems. Both
areas have undergone varying degrees of surface and
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underground coal mining, logging, and infrastructure
construction. Bedrock geology in both areas comprises
nearly flat-lying Middle Pennsylvanian sedimentary
strata, specifically sandstones, limestones, siltstones,
shale, coal seams, and underclays (McDowell, 1986;
Greb et al., 2009). Marine and organic shale beds exist
in the study areas and have been mapped as distinct rock
units. These shale beds are noteworthy and provide in-
sight into landslide occurrence, as shale, coal, and un-
derclay beds are known to weather easily (Outerbridge,
1987; Crawford, 2014; Chapella et al., 2019). The bed-
rock is overlain by colluvium of variable thickness, in
which deposition is primarily controlled by mass wast-
ing processes such as landslides (McDowell, 1986).
Landslides in the colluvium are typically thin (less than
3 m deep) translational or thicker rotational landslides.
Both translational and rotational landslides have the po-
tential to develop into debris flows (Crawford, 2014;
Crawford et al., 2021).

Methods

PISA-m

PISA-m is a physics-based probabilistic slope stability
modeling program that utilizes the first-order, second-
moment (FOSM) implementation of the infinite slope
equation developed by the U.S. Department of Agricul-
ture Forest Service for the LISA and DLISA programs
(Hammond et al., 1992; Haneberg, 2007). The infinite
slope equation is itself an approximation of slope fail-
ure mechanics. The infinite slope equation assumes an
infinitely long slope plane with a parallel failure sur-
face; specifically, the length of the landslide is much
larger than the thickness to the failure plane (Dai and
Lei, 2025). This approximation does not translate well
to thicker movements or complex failure geometries;
however, most landslides in eastern Kentucky are thin,
translational slope failures (Crawford et al., 2021), and
the infinite slope equation is therefore a reasonable ap-
proximation. The infinite slope factor of safety equation
used in PISA-m (Hammond et al., 1992; Haneberg,
2004, 2007) is

FS

— = + Cs + [qt + /7mD + Vsat — Tw — TYm HWD} COSZ Btan d) (1)
[qt + /7111D + Vsat — Tm HWD} sin ﬁ COSB ’
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where FS corresponds to a factor of safety value, cr is
the cohesive strength from tree roots in Pa, cs is the co-
hesive strength of soil in Pa, qg: is a uniform surcharge
exerted by vegetation in Pa, ym is the unit weight of
moist soil in N/m?, ysa is the unit weight of saturated
soil in N/m3, y is the unit weight of water, D is the
thickness of soil above slip surface in m, Hy is the unit-
less height of the phreatic surface (relative to the water
table) above slip surface, £ is the slope angle in degrees,
and ¢ is the angle of internal friction in degrees.

Infinite slope models assume that 1) the failure plane is
parallel to the topographic and phreatic surfaces, 2) the
failure plane extends infinitely in all directions, and 3)
there is a single soil layer with uniform properties
(Hammond et al., 1992). Despite these assumptions, in-
finite slope models and PISA-m are useful reconnais-
sance tools for characterizing the landslide hazard in an
area.

PISA-m uses mean values of the parameters in Equation
1 to calculate a mean FS value,

and a truncated Taylor series approximation of the FS
variance (the square of the standard deviation; Hane-
berg, 2004, 2007),

2
52, = Z <%%€> 57 -

€)

Once the mean and variance have been calculated,
probability of FS < 1 (Prob[FS < 1]) is determined by
calculating the value of the cumulative distribution
function of FS at a value of FS = 1, where FS is assumed
to be log-normally distributed. Haneberg (2004, 2012)
evaluated the validity of an a priori log-normal assump-
tion for FOSM infinite slope models and found the log-
normal assumption to work well in most situations. The
FOSM approach implemented by PISA-m assumes that
the input parameters are uncorrelated; however, corre-
lation among parameters can be included in FOSM ap-
proximations (Haneberg, 2016). Because the FOSM
approximation is non-iterative (as opposed to computa-
tionally intensive Monte Carlo simulations and other it-
erative algorithms), PISA-m can generate usefully
reliable results in a fraction of the time that would be
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required by an iterative simulation. This speed and
computational simplicity are useful when working with
large, high-resolution DEMs over regional scales.

Model Requirements

PISA-m requires a DEM, map layers representing soils
and forest cover, and a plain text parameter file. In this
study, the DEM provided the basis for slope angle cal-
culation, and the soils and forest cover map layers pro-
vided detailed spatial extents for the geotechnical data.
The parameters file was used to assign model settings
and geotechnical parameters (cohesions, internal angle
of friction, surcharge, soil depth, pore pressure coeffi-
cient, and unit weights) to the soils units present in the
map layers. The parameters file listed the geotechnical
values that were assigned to the spatial extents defined
by the input soils and forest cover layers, along with a
probability distribution for each variable. The parame-
ters file can also be used to enable slope stability calcu-
lations based on seismic activity, similar to Newmark
analysis (Newmark, 1959; Haneberg, 2004).

Data Distributions

Using the FOSM probabilistic method, PISA-m can ef-
fectively account for uncertainty by allowing the user
to select the most appropriate data distributions for each
geotechnical parameter. PISA-m is equipped with sev-
eral data distribution types; those relevant to this study
and discussion are normal, uniform, and extreme value
type | (or Gumbel) distributions. These distributions
and other are described in Haneberg (2007). Parameter
values used in PISA-m can also be scalar constants, in
which case there is no distribution assigned.

Model Cases

As PISA-m has the ability to compute Prob[FS < 1]
quickly over large datasets and account for imprecise
geotechnical values and the uncertainty intrinsic in nat-
ural landscapes, it is well suited for reconnaissance or
regional landslide assessments. This investigation eval-
uates PISA-m as a regional landslide susceptibility
modeling tool, specifically in the common use case of
sparse geotechnical data, by computing eight suscepti-
bility models using four soil input layers and parameter
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Table 1. The eight models, four cases over two specifications, used to evaluate the practicality and utility of the PISA-m

slope stability program for landslide susceptibility models.

[Abbreviations: KYTC, Kentucky Transportation Cabinet; USCS, Unified Soil Classification System; SSURGO, Natural Resources Conservation

Service Soil Survey Geographic Database]

Model Parameter specification Soil input case Assessment inventory
Al 1. Shale bed
A2 L N - 2. Geological formation L
A3 A. Approximating background climatic conditions 3. USCS (SSURGO) Historic
A4 4. Generalized USCS (SSURGO)
B1 1. Shale bed
B2 N . 2. Geological formation . .
B3 B. Approximating extreme rainfall event 3. USCS (SSURGO) Rapid reconnaissance
B4 4. Generalized USCS (SSURGO)

specifications approximating two climatic scenarios de-
fined by landslide inventories within eastern Kentucky
study areas. These eight models, with each of the four
soil inputs applied to both parameter specifications, are
outlined in Table 1. These models are defined by unique
input soils map layers and associated geotechnical data.
Geotechnical data were obtained from Kentucky Trans-
portation Cabinet (KYTC) reports and related publica-
tions, with the exception of a generalized case using
typical values for Unified Soil Classification System
(USCS) classes for comparison.

The climatic scenarios assessed over the eight models
were selected based on the availability of landslide in-
ventories for model validation. Validation was done us-
ing the statewide historic inventory (Crawford, 2014,
2022), which represents typical landslide conditioning
factors, and the July 2022 extreme rainfall inventory
(Crawford et al., 2023), which represents extreme
event-based conditions. Inventory landslides that oc-
curred after the date of DEM data collection were inter-
sected with the PISA-m results to estimate PISA-m
performance. Using both inventories for validation al-
lowed the performance of PISA-m to be assessed for
both typical and extreme scenarios, or rather for both
time-independent and event-specific scenarios.

Model Inputs

DEM

The DEM was derived from airborne lidar data and pro-
cessed to a United States Geological Survey (USGS)
Quiality Level of 2 (Heidemann, 2012) with a spatial

resolution of 1.5 m (5 ft). The DEM was resampled to
~3 m (10 ft) cell size for computing efficiency. Differ-
ences in preliminary results were not apparent when
comparing models created from the 1.5 m DEM to mod-
els created from the 3 m DEM (Crawford et al., 2019).
The DEM was “smoothed,” a local averaging of eleva-
tion values using neighboring values within a moving
circular window, to remove potential errors and holes
in the DEM and reduce noise in the output PISA-m
models. Window size was chosen through comparative
testing of 7.5 m (25 ft) increments, and a radius of 15 m
(50 ft) was found to best preserve the unsmoothed topo-
graphic characteristics of the DEM while minimizing
noise and potential anomalies.

Forest Cover

The forest cover map input shows spatial distributions
of forested areas to satisfy the tree surcharge and root
strength components of the infinite slope equation. The
National Land Cover Database (NLCD; Dewitz and
U.S. Geological Survey, 2021) raster was reclassified
using existing forest cover classes to serve as a binary
raster of forested and bare areas. The NLCD raster was
far coarser than the other inputs used and showed jag-
ged edges even after resampling. An alternative forest
cover extent raster was created by processing lidar point
cloud data using a procedure similar to that described
by Swallom et al. (2025). The DEM was subtracted
from unclassified lidar returns to obtain vegetation
height, which was further divided into forested and bare
categories based on a 5 m (16.4 ft) threshold for trees
(FGDC, 2008). Further processing was performed by
smoothing the initial tree layer with a ~7.5 m (25 ft)
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moving circular window (based on tree crown envelope
diameters) to reduce noise in the forested areas. Com-
parison with aerial photography acquired in the same
year as the lidar data showed consistency with the pho-
tographed canopy (Fig. 3).

Soil Layer Variation

Three soil map layers were used across the eight mod-
els: a map of shale beds, a bedrock formation map, and
a soils map represented by USCS classes.

The shale bed layer (used for case 1) was modified from
Chapella et al. (2019) and used the known influence of
shale beds on landslide occurrence (Outerbridge, 1987,
Crawford, 2014; Chapella et al., 2019). To spatially
highlight shale beds, shale arc polylines were buffered
to a ~30 m (100 ft) width and appended to a 1:24,000
bedrock lithology map in GIS. The geological units
were combined into a single colluvium group, assuming
near homogenous colluvial soil composition across the
geological units. This was similar to the approach of
Haneberg et al. (2009), who used surficial mapping to
distinguish between areas of thick and thin colluvium
in a project area in San Francisco.

The geological layer (used for case 2) used a 1:24,000
scale bedrock formation map as a proxy for soil type.
This method assumed that bedrock formation spatial
extents are useful predictors of the soil geotechnical pa-
rameters used in PISA-m and was similar to the

Al i % W

| National Land Cover Database
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-1

Forest Cover
Bare
Forested
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bedrock-based approach taken by Stillwater Sciences
(2007) and Weppner et al. (2008).

The soils map used broad Natural Resources Conserva-
tion Service Soil Survey Geographic Database
(SSURGO; NRCS, 2023) spatial extents grouped into
USCS soil units. The soil map layer is used for both
case 3 and 4.

These layers, along with the DEM and binary forest
cover raster maps, were clipped to the study areas and
converted to ASClIs for use in PISA-m. The DEM and
forest cover layers were used for all eight models

(Fig. 4).
Geotechnical Inputs

The geotechnical input parameters and values used
were split into two groups based on climatic/rainfall
scenarios. The typical background climatic conditions,
approximated with geotechnical parameters in specifi-
cation A (models A1-A4), were used to model land-
slide probabilities in static, non-seasonal conditions.
Therefore, the geotechnical values used as PISA-m in-
puts needed to represent a full range of possible values
throughout a year or many years. In order to assess the
utility of PISA-m for modeling slope stability following
an extreme rainfall event, models B1-B4 needed to ac-
count for the impact of the rainfall event by using more
characteristic geotechnical values. This was done by
modifying the distribution and value range of the

0 50 100 200
I N \ctors

0 200 400 800
N W oot

Figure 3. Comparison of the National Land Cover Database (Dewitz and U.S. Geological Survey, 2021) forest cover layer,
the lidar-derived forest cover layer, and the canopy as seen from 2012 aerial photography (NAIP, 2012).
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normalized height of the phreatic table (Hw) parameter
to approximate full saturation of slopes during the ex-
treme rainfall event. When these geotechnical values
were not modified to account for the extreme rainfall
event, preliminary model results underpredicted land-
slide occurrence when compared the extreme event in-
ventory. Despite the phreatic table consideration and
the order of magnitude difference in temporal scale,
many of the other geotechnical values used were con-
sistent between the cases and specifications due to data
scarcity and the simplified nature of this study.

The geotechnical values used for cases 1-3 were modi-
fied from geotechnical boring information from KYTC
and applicable studies (Sidle et al., 1985; Hammond et
al., 1992; Haneberg, 2004; Chapella et al., 2019; Tables
2-4). The generalized soil case, 4, used easily accessi-
ble and generalized geotechnical examples for input
data, such as those defined in textbooks (Anderson and
Sitar, 1995; Budhu, 2007; Das, 2010; Table 5). Ge-
otechnical values related to forest cover were gathered
from similar studies that also used this version of the
infinite slope equation (Hammond et al.,, 1999;
Chapella et al., 2019; Table 6). Modifications made to
these datasets included the reduction of internal friction
angles (¢) and the zeroing of soil cohesion (cs). These
modifications have been used in similar analyses in the
regional analogues of western Pennsylvania and
Wheeling, West Virgina (Hamel, 1980; Haneberg,
2004), to represent residual shear strength characteris-
tics instead of peak or typical shear strength. It is un-
clear if the geotechnical data sources used in this study
report peak shear strength, so the reductions were per-
formed as a precautionary measure.

As for distributions, a uniform distribution was used for
a majority of the geotechnical variables due to limited
information regarding the distribution shapes of the var-
iables (Hammond et al., 1992). Two exceptions to the
uniform distribution selection were tree surcharge,
which used a normal distribution as prescribed by
Chapella et al. (2019), and specification A phreatic ta-
ble height, which used an extreme value type | distribu-
tion. Characterizing the phreatic table height (Hw) is
particularly difficult due to variation caused by the
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Figure 4. Inset examples of PISA-m input layers used for
this study: the DEM, forest cover layer, and three soil map
layers used in the eight models (shale bed, geological for-
mation, and the UCSC soil classes). The numbers to the left
of the soil layers correspond to model cases detailed in
Table 1.
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Table 2. Geotechnical values for the combined geological units (colluvium group), alluvium, and shale beds, modified from Kentucky Transportation Cabinet drilling
report data and additional studies (Sidle et al., 1985; Hammond et al., 1992; Haneberg, 2004; Chapella et al., 2019).

Alluvium Colluvium Shale
Variable Model Distribution
Min. Max. Min. Max. Min. Max.
Internal friction, ¢ (deg) Al, Bl Uniform 17 33 22 33 17 24
Cohesion, ¢; (Pa) Al, Bl Uniform 0 0 0
Soil thickness, D (m) Al, Bl Uniform 6.1 12.2 1.5 18.3 0.61 43.9
Pore pressure coefficient, from Hy, (unitless) Al Extreme?! 0.5 0.1 0.5 0.1 0.5 0.1
Hw (unitless) Bl Uniform 0.75 1 0.75 1 0.75 1
Saturated unit weight, ysa (N/m?) Al, Bl Uniform 19,680.52 21,719.96 18,252.92 22,943.61 21,210.10 23,147.56
Moist unit weight, ym (N/m3) Al, Bl Uniform 19,068.69 22,369.16 15,091.80 24,065.30 20,904.18 26,614.59

'Extreme (Gumbel) distribution uses location and shape parameters instead of the minimum and maximum values used by the uniform distribution.

Table 3. Geotechnical values for bedrock formations, modified from Kentucky Transportation Cabinet drilling report data and additional studies (Sidle et al., 1985;
Hammond et al., 1992; Haneberg, 2004; Chapella et al., 2019).

Grundy, Hyden,

Alluvium Four Corners A Princess
Variable Model  Distribution and Pikeville
Min. Max. Min. Max. Min. Max. Min. Max.
Internal friction, ¢ (deg) Al,B1 Uniform 17 33 17 24 17 24 15 27
Cohesion, ¢ (Pa) Al,Bl1 Uniform 0 0 0 0
Soil thickness, D (m) Al,Bl1 Uniform 0.3 0.91 0.61 3.05 0.61 43.9 0.3 0.91
Pore pressure coefficient, from Hy (unitless) Al Extreme! 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1
Hw (unitless) Bl Uniform 0.75 1 0.75 1 0.75 1 0.75 1
Saturated unit weight, ysat (N/m®) Al,B1 Uniform 18,850.50 20,892.64 20,421.38 22,306.43 17,436.71 21,992.25 17,436.71 21,992.25
Moist unit weight, ym (N/m®) Al,B1 Uniform 17,007.98 22,306.43 20,107.20 25,605.26 14,452.05 23,091.86 14,452.05 23,091.86

'Extreme distribution uses location and shape parameters instead of the minimum and maximum values used by the uniform distribution.
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Table 4. Geotechnical values for United Soil Classification System units, modified from Kentucky Transportation Cabinet drilling report data and additional studies
(Sidle et al., 1985; Hammond et al., 1992; Haneberg, 2004; Chapella et al., 2019).

CL, CI-ML CG, GC-GM ML, OH SC-SM SM
Variable Model Distribution
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

Internal friction, ¢ (deg) Al,B1 Uniform 24 32 24 33 23 33 24 31 23 33
Cohesion, ¢; (Pa) Al, Bl Uniform 0 0 0 0 0
Soil thickness, D (m) Al,B1l Uniform 15 18 1.5 18 6 12 1 6 6 12
Pore pressure coefficient, Al Extreme! 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1

from Hy (unitless)
Hw (unitless) B1 Uniform 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1
Saturated unit weight, yst AL, B1  Uniform 17,986.81 19,997.56 19,997.56 21,992.60 15,991.76 21,992.60 17,986.81 19,997.56 17,986.81 19,997.56

(N/md)
Moist unit weight, ym Al,Bl Uniform 13,981.01 17,908.26 14,986.39 16,965.72 13,981.01 20,892.97 12,991.34 15,991.76 12,991.34 15,991.76

(N/m?3)

1Extreme distribution uses location and shape parameters instead of the minimum and maximum values used by the uniform distribution.

Table 5. Geotechnical values for United Soil Classification System units, derived from a data repository hosted by www.geotechdata.info and other accessible,

generalized data (Anderson and Sitar, 1995; Budhu, 2007; Das, 2010).

CL, CI-ML CG GC-CM ML OH SC-SM SM
Variable Model Distribution
Min. Max. Min. Max. Min. Max. Min Max. Min. Max. Min. Max. Min. Max
Internal friction, Al,B1 Uniform 24 32 25 32 27 37 24 32 22 32 27 37 24 30
¢ (deg)
Cohesion, c; (Pa) Al,B1 Uniform 0 0 0 0 0 0 0
Soil thickness, Al,B1 Uniform 15 18 15 18 15 18 6 12 6 12 1 6 6 12
D (m)
Pore pressure Al Extreme® 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 05 0.1 0.5 0.1 0.5 0.1
coefficient, from
Hy (unitless)
H., (unitless) B1 Uniform 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1
Saturated unit Al,B1 Uniform 14,000.00 18,000.00 20,000.00 22,000.00 20,000.00 22,000.00 16,000.00 22,000.00 16,000.00 22,000.00 18,000.00 20,000.00 18,000.00 20,000.00
weight, ysat
(N/m?®)
Moist unit weight, ~ Al,B1 Uniform 18,000.00 20,000.00 15,000.00 17,000.00 15,000.00 17,000.00 14,000.00 21,000.00 14,000.00 21,000.00 13,000.00 16,000.00 13,000.00 16,000.00
7m (N/m®)

1Extreme distribution uses location and shape parameters instead of the minimum and maximum values used by the uniform distribution.
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Table 6. Geotechnical values for tree surcharge and root co-
hesions, modified from Chapella et al. (2019). Bare cover
was considered as a constant of zero.

Variable Distribution  Min. Max. Mean Star_1dz31rd

deviation

Root cohesion, Uniform 5,700 6,900 — —
cr (Pa)

Tree surcharge,  Normal — — 2,500 +500
qt (Pa)

frequency and duration of rainfall events as well as an-
tecedent moisture conditions (Haneberg, 2000). Hane-
berg (2000) describes the significant impact of
normalized phreatic table height (Hw), and the related
pore pressure coefficient, on changes to factor of safety.
To accurately account for the pore pressure coefficient,
the extreme value type | distribution was used to ap-
proximate annual variation (Weppner et al., 2008) for
the analyses in models A1-A4. Models B1-B4 instead
had geotechnical values and distributions selected with
the rainfall duration and frequency data recorded over a
four-day extreme rainfall event (Crawford et al., 2023)
in mind. In general, soil moisture conditions before and
during rainfall events are not well known or character-
ized. Haneberg and Gokce (1994) considered soil mois-
ture characteristics observed from a landslide deposit in
colluvial slopes near Cincinnati, Ohio, and found that
soil moisture responded rapidly to rainfall events. Con-
sidering the relatively dry summer season experienced
in eastern Kentucky in July 2022 and the magnitude of
the extreme rainfall event (NWS, 2023), lag effects may
not be applicable, and a similarly rapid rise in phreatic
table height may be assumed for this event. As such,
values for Hy with a uniform distribution were selected
in specification B (models B1-B4) to represent near or
fully saturated conditions.

Model Assessment Method

To quantify the performance of the PISA-m models,
buffered landslide points were intersected with the re-
sults. These points represented historic landslides that
occurred after DEM creation in locations 1 and 2
(~2012 for areas within Perry County and Magoffin
County, ~2017 for other areas) and the landslides iden-
tified from rapid reconnaissance following a July 2022
extreme rainfall event (Crawford et al., 2023). A total
of 37 historic landslides (16 in location 1 and 21 in
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location 2) with failure dates between 2011 and 2022
were used to represent the background climatic scenario
and assess models A1-A4. For models B1-B4, which
used parameter specifications to approximate the ex-
treme rainfall scenario, 1,068 landslides from the rapid
reconnaissance inventory were used to assess model
performance. The observed landslides in the rapid re-
connaissance inventory correspond to a small date
range (July 14-18, 2022). The extreme rainfall scenario
(and related specification B) is defined by an anomalous
four-day rainfall total of 360—-410 mm (14-16 in.). In
comparison, over the decade considered in the back-
ground climatic conditions scenario (and specification
A), average total annual rainfall was 130 mm for loca-
tion 1 and 110 mm for location 2 (PRISM, 2024). The
historic inventory landslides with recorded dates
largely occurred within late winter and early spring.
Figure 5 compares rainfall to historic landslide
occurrences.
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Figure 5. Histogram of landslide counts (blue bars) from the
historic inventory in the study area compared to average
rainfall data from PRISM (black line).

To approximate a landslide deposit and to cover poten-
tial initiation zones, an arbitrary ~15 m (50 ft) buffer
was assigned to each point and intersected with the
PISA-m model results. This arbitrary buffer was used
for ease of reproducibility in situations of information
scarcity. In most instances, 15 m may be an underesti-
mation of landslide initiation zone sizes. However, this
smaller size constraint on the inventory buffers used for
PISA-m assessment was preferred over capturing dis-
tant high Prob[FS < 1] values that were disconnected
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from the landslide in question. The buffered landslide
points were used to gather the mean and maximum
Prob[FS < 1] value from each landslide area. Higher
mean probability values (i.e., Prob[FS < 1] > 0.50) for
known slope failure areas were considered accurate
model characterization (Haneberg, 2004; Chapella et
al., 2019). Accurate prediction/success rates were de-
termined by assessing the number of landslides in each
inventory that intersected with Prob[FS < 1] > 0.50
areas.

Further, the models were checked for overfitting, which
could result in the model predicting high susceptibility
across the entire landscape. To perform an overfitting
assessment, an equal number of negative samples, or
non-landslide points, are needed to balance the land-
slide points. As such, to assess models A1-A4, 37 non-
landslide points were needed to balance the historic
inventory, and to assess models B1-B4, 1,068 non-
landslide points were needed balance the rapid recon-
naissance inventory. These non-landslide points were
also buffered 15 m and intersected with model results.
Although using an equal number of positive and nega-
tive samples avoids bias towards the larger class
(Blagus and Lusa, 2010), landslide assessment would
imply a much larger area of non-landslide activity. To
constrain non-landslide point selection to be more rep-
resentative of these stable environments, GIS-based
controls were applied. First, buffers of ~60 m (200 ft)
were generated around landslide points from both the
historic and rapid reconnaissance inventories and
around digitized landslide deposit extents in location 2
only (Crawford et al., 2021, 2023). Digitized landslide
extents were not available in location 1 during this
study. These buffered landslide areas were omitted
from non-landslide point selection areas. Second, mean
slope angles from each landslide inventory were deter-
mined and used as approximate thresholds for slopes
more primed for failure. As such, areas above 24.3° for
location 1 and 28.9° for location 2 were omitted from
the non-landslide selection area. This slope angle
thresholding was done to ensure that existing but un-
confirmed or unmapped landslides were not considered
in model assessment. Third, to minimize the effects of
the random generation, such as non-landslide points
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clustering in similar topographic areas, five distinct
non-landslide point datasets were randomly generated
for each location. Each of these five non-landslide point
datasets was intersected with model results, and those
five sets of intersections were averaged to produce the
single non-landslide dataset needed for Prob[FS < 1]
comparisons. This averaging of non-landslide datasets
worked as a form of cross validation.

To consider potential bias of the roadway-based recon-
naissance efforts that created the extreme event inven-
tory, the rapid reconnaissance inventory was intersected
with a Euclidean distance-to-roads raster. This showed
an average distance from slides to roadways of 54 m
(177 ft), with a maximum distance of ~1,130 m (3,700
ft). Noting these distances, non-landslide points were
generated within 61 m (200 ft; mean distance from road
plus radius of landslide area) and 305 m (1,000 ft) of
roads in the study area, with slope angle thresholds and
landslide areas considered. These landslide and non-
landslide area intersections with the PISA-m results
were assessed using confusion matrices. True positives
(TP) were determined from intersections of
Prob[FS < 1] > 0.50 with landslide areas, and where
landslide areas intersected with Prob[FS < 1] < 0.50,
they were classed as false negatives (FN). Model re-
sults of Prob[FS < 1] > 0.50 that intersected known non-
landslide areas were considered false positives (FP),
and results with Prob[FS < 1] < 0.50 in non-landslide
areas were classed as true negatives (TN). Model per-
formance is defined by confusion matrix accuracy
(ACC), which is calculated as

TP +1TN

A =
e TP +FP+TN + FN’

4)

where accuracy is derived from the relationship be-
tween the sum of TP and TN divided by the sum of all
classifications (Ting, 2017; Chicco and Jurman, 2020).

Chicco and Jurman (2020) proposed the adoption of the
Matthews correlation coefficient (MCC). MCC uses an
approximate calculation of the Pearson product-mo-
ment correlation coefficient (Powers, 2011). MCC is
defined by

TP x TN — FP x FN

MCC =
\/TP—O-FP x TP+ FN x TN+ FP x TN+ FN

)
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and is normalized with

MCC + 1

nMCC = 5

(6)

Normalized MCC was assessed as a check for other
metrics. The MCC metric focuses on correct predic-
tions, TP and TN, and returns a favorable score when
those cases are a majority of the assessment. MCC is
best utilized on unbalanced datasets, but the focus on
TP and TN majority is useful even for intentionally bal-
anced cases such as this assessment.

Results

Results for each of the eight models were computed for
Prob[FS < 1] under static (non-seismic) conditions and
imported into GIS for further analysis. The resulting
Prob[FS < 1] raster maps were symbolized as five
groups based on equal intervals, following Kentucky
Geological Survey (KGS) conventions (Crawford et al.,
2021). Slope angles below 5° were automatically omit-
ted from the model results.

Specification A
Background Climatic Scenario

PISA-m results were similar for each of the specifica-
tion A models, highlighting planar slope faces and sub-
tle cliff and bench topography with Prob[FS < 1] 0f 0.50
or higher. For the shale bed cases and both USCS cases,
the smooth planar slopes, as well as where the slopes
transition into hollows, were uniformly classified with
Prob[FS < 1] > 0.50. In the geological formation case,
these same areas of planar slope faces and hollow tran-
sitions had a wider range of Prob[FS < 1] values pre-
sent. The geological formation case also had a more
pronounced influence from the forest cover layer, espe-
cially where low slope angle areas near ridgetops had
gaps in the canopy. These holes in forest cover were
represented in PISA-m model results by stark concen-
trations of high Prob[FS < 1] > 0.50. In general, areas
of lower slope angles had Prob[FS < 1] < 0.50.
Prob[FS < 1] > 0.50 values were dominant in areas
where incision was sharper and slope angles increased.
Differences between the two USCS cases were very
small, with the generalized case having overall lower
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Prob[FS < 1] values in some areas (particularly broad
hollows). The shale bed case was the only model result-
ing in higher Prob[FS < 1] values near the ridgetops.
Inset examples for specification A model results are
seen in Figure 6 and Figure 7.

Specification B
Extreme Rainfall Scenario

The specification B models characteristically had a sig-
nificant coverage of high Prob[FS < 1] values across the
landscape. PISA-m models with this specification at-
tempted to account for the extreme rainfall event pre-
cipitation and subsequent increase in landslide
occurrence by adjusting the model inputs and as a re-
sult, a majority of the landscape was considered suscep-
tible to landslide occurrence. That is, PISA-m
calculated Prob[FS < 1] > 0.50 for nearly all slopes
above 22°. The geological formation case had a wider
range of Prob[FS < 1] values represented, preserving
wide benches in the hillsides as areas where
Prob[FS < 1] <0.50. The shale bed case and both USCS
cases output Prob[FS < 1] > 0.50 for a majority of the
slopes. These cases were largely indistinguishable from
one another, with a slight reduction in the overall
Prob[FS < 1] values in the generalized USCS case (B4)
and report-derived USCS case (B3). Shale bed and
USCS results extended Prob[FS < 1]>0.50 to the ridge-
tops, whereas the geological formation case (B2) indi-
cated lower Prob[FS < 1] values near ridgetops, these
value reductions matching the mapped extent of a sand-
stone unit. Similar to the results for specification A,
these formation-controlled areas with low Prob[FS < 1],
as well as other low slope angle areas, show that clear-
ings in the forest cover raster influence model results.
Inset examples of the model results for specification B
can be seen in Figure 7. Area coverage percentages for
each susceptibility group are shown in Table 7.

Model Assessment Results

Model results were intersected with landslide and non-
landslide areas. Success rates (only considering TP) for
each model are shown in Table 8.
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Figure 6. Inset PISA-m results for the four cases using the parameters in specification A, which approximates a background
climatic conditions scenario. Models numbered and labeled per Table 1.
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Table 7. Percent area coverages of the Prob[FS < 1] model
results divided into five equal interval groups for each
model.

Prob[FS < 1]

Model

0-0.2 0204 0406 0608 08-1.0
Al 28.6%  6.8% 6.9% 9.0% 48.6%
A2 36.7%  8.6% 9.0% 12.3% 33.5%
A3 311% 6.9% 6.9% 9.0% 46.2%
Ad 31.7%  6.4% 6.4% 8.2% 47.3%
Bl 17.0% 4.0% 4.3% 6.0% 68.8%
B2 247%  6.4% 7.1% 10.8% 51.0%
B3 17.2%  3.7% 3.9% 55%  69.8%
B4 17.7%  3.3% 3.4% 47% 70.8%

Table 8. Success rates of each model with the respective
landslide inventory.

Inventory Model  Success rate (%)
Al 75.7
. A2 75.7
Historic A3 78.4
A4 78.4
B1 83.5
Rapid reconnaissance B2 5.7
P B3 82,5
B4 81.9

Further assessment included non-landslide points along
with the landslide points to calculate metrics based on
confusion matrix relationships. The historic inventory
points for both location 1 and 2 were used for the spec-
ification A models, or those approximating a back-
ground climatic scenario, and when paired with the
averaged non-landslide dataset yielded confusion ma-
trix derived model accuracies of 72.97%, 82.43%,
79.73%, and 77.03% for the shale bed, geological for-
mation, report-derived USCS, and generalized USCS
cases, respectively. To assess specification B models,
or those approximating the extreme rainfall scenario, a
two-tailed Student’s t-test (Kalpi¢ et al., 2011) was used
to test for similarity in the non-landslide points concen-
trated around roadways. Non-landslide points within
300 m of roads did not have statistically distinguishable
mean Prob[FS < 1] values from those of non-landslide
points generated more than 300 m from the roadway
(p > 0.05). However, points generated within 61 m of
roads were statistically distinct from points from across
the study area (p < 0.05). Since the rapid reconnaissance
inventory points were on average 54 m from the
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roadway, the roadway-constrained non-landslide points
were considered more suitable for comparison to the
rapid reconnaissance inventory. Additionally, model
accuracies improved by about 5% when using the road-
way-constrained negative samples. The rapid recon-
naissance inventory, when compared to an averaged,
roadway-constrained, non-landslide dataset, showed
model accuracies of 84.04%, 83.90%, 83.52%, and
83.33% for the shale bed, geological formation, report-
derived USCS, and generalized USCS cases, respec-
tively. The additional assessment metrics beyond con-
fusion matrix accuracy indicate stable model results
(Table 9). Confusion matrix assessments for both spec-
ifications are seen in Figures 8 and 9.

Table 9. Performance metrics across all models. In general,
model performance was consistent across metrics.

Matthews Correlation

Model - Accuracy (%) Coefficient, normalized (nMCC)

Al 72.97 0.73

A2 82.43 0.83

A3 79.73 0.8

A4 77.03 0.77

Bl 84.04 0.84

B2 83.90 0.84

B3 83.52 0.84

B4 83.33 0.83
Discussion

Using PISA-m to model an extreme scenario (specifi-
cation B) appears to be the better utilization of the mod-
eling program based on higher confusion matrix
assessment accuracies, but those high Prob[FS < 1] val-
ues could be overpredictions, as many slope faces have
Prob[FS < 1] > 0.50. However, the variability of the
shale bed case, a high-performing model by accuracy
when using specification B yet the lowest overall when
using specification A, may just be the byproduct of the
larger sample size. Overall, the highest false positive
rate was 12% (models Al, A2, and B2), and the lowest
was 8 to 9% (models B1 and B3), indicating that the
models rarely misclassed non-landslides.

Point landslide observations may not be indicative of all
possible landslide failure characteristics, thus increas-
ing the false positive rate, as any model’s focus on a
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A1l Shale Bed |A2| Formation
ACC="72.97% / n=74 ACC=82.43% / n=74
28 11 28 4
(37.84%)  (14.86%) (37.84%) = (5.41%)
P FN
9 26 9 33
(12.16%)  (35.14%) (12.16%)  (44.59%)
FP v
A3 USCS - A4 USCS -
Reports Generalized
ACC="79.73% / n=74 ACC="77.03% / n=74
29 7 29 9
(39.19%)  (9.46%) (39.19%)  (12.16%)
8 30 8 28
(10.81%)  (40.54%) (10.81%)  (37.84%)

Figure 8. Confusion matrices for the PISA-m results for
each of the four cases using specification A. Models num-
bered per Table 1. Note true positive (TP), true negatives
(TN), false positives (FP), and false negatives (FN) labels in
Al.

specific landslide failure type may cause overprediction
regionally. This may have occurred with the rapid re-
connaissance inventory, as the points were mostly close
to roadways, and model assessments were improved
when non-landslide points were generated with road-
way proximity in mind. These improvements in the
model performances may also be due to the other con-
straints, such as forcing non-landslide points off
hillslopes. While constraining the non-landslide points
improved the metrics, potential overprediction of
Prob[FS < 1] on slopes may have been overlooked. The
buffers applied to points to create initiation zones or
represent deposits could also lead to uncertainty in
model performance. However, a conservative size was
chosen to reduce this effect. Swallom et al. (2025)
found a 16.7 m buffer appropriate to approximate land-
slide areas with the same extreme rainfall inventory. In
general, comparison to any available landslide extent
data should be able to inform the selection of an appro-
priate buffer size for landslide inventory points. Non-
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B1| Shale Bed |B2| Formation
ACC=84.04% /n=2.136 ACC=83.90% /n=2,136
892 165 808 84
(41.76%)  (7.72%) (37.83%)  (3.93%)

7P| FN
176 845 260 984
(8.24%) (42.28%) (12.17%) (46.07%)
FP| Tv]
B3 USCS - B4 USCS -
Reports Generalized
ACC=83.52%/n=2.136 ACC=83.33%/n=2,136
881 165 875 163
(41.25%) (7.72%) (40.96%) (7.63%)
187 903 193 905
(8.75%)  (42.28%) (9.04%)  (42.37%)

Figure 9. Confusion matrices for each of the four PISA-m
cases using specification B. Models numbered per Table 1.
Note true positive (TP), true negatives (TN), false positives
(FP), and false negatives (FN) labels in B1.

landslide point selection is a particular area of focus in
contemporary landslide susceptibility modeling (Hu et
al., 2020; Khabiri et al., 2023; Zhou et al., 2024) be-
cause constrained non-landslide point selection has
been proven to yield higher performing models. For ex-
ample, Khabiri et al. (2023) used low Prob[FS < 1] re-
sults from PISA-m, with a version of the shale bed case,
as a control for non-landslide point selection. Zhou et
al. (2024) deployed a similar approach, instead using a
logistic regression model output to select the non-land-
slide points. For simplicity, only the GIS-based con-
straints discussed previously were used for this study.
Even when constrained by slope angle and known land-
slide locations, the assumption persists that randomly
selected non-landslide points do not intersect a land-
slide. Slope angle thresholding may assist in reducing
these overlaps, as the hypothetical non-identified land-
slide would be atypical of other slides in the inventory.
The omission of areas around the digitized landslide
polygon inventory (Crawford et al., 2021) of location 2
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increased confidence that landslides were not inadvert-
ently included in the non-landslide case. Further, by av-
eraging five sets randomly sampled non-landslide point
datasets, the influence of spurious points was reduced.
The rapid reconnaissance inventory lacks confidence in
landslide locations, and with some of the landslide
points plotted within the floodplain or on the road
(likely where the landslide deposit reached), the land-
slide point locations may be inexact. Swallom et al.
(2025) noted that overall, the rapid reconnaissance in-
ventory points fit into general geomorphic landform
classes, or geomorphons, (Jasiewicz and Stepiski,
2013) representing typical hillslope areas, inferring a
lack of bias of points along roadways. Despite this, the
t-test indicated that points generated in close proximity
to roads had statistically distinct Prob[FS < 1] values,
so only non-landslide points generated near roadways
were used. These roadway-constrained points increased
assessment accuracies, primarily by decreasing FP.
Again, this is likely due to the concentration of points
in low value Prob[FS < 1] areas. In general, applying
constraints to the landslide inventories improved the as-
sessments. At worst, when considering a randomly
sampled non-landslide point set (with the only con-
straint being the omission of known landslide extents),
the model performance was about 30% lower. Regard-
less, it is unclear how these constrained points may have
artificially inflated model performance, as potential
overprediction on high slope angles was not considered.

While meant to assess model performance, considera-
tion of the inventory point intersections may have
skewed some of the model interpretations. Ultimately,
the assessments are a first-order test of over- or under-
prediction for the PISA-m models. If all known land-
slide points were missed (low TP), or conversely, if a
majority of the determined non-landslide points were
classed as unstable (low TN), then these PISA-m results
could be rejected as having limited utility. Metrics that
focus on the known landslide points (such as success
rates; Table 8) were similar to accuracy, as were more
robust metrics such as the nMCC. While an approxima-
tion, the favorable results from the point assessments
are a good indicator that PISA-m works as a first-order
investigation into regional landslide susceptibility.
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More thorough assessments using complete inventories
are recommended, as are more thorough assessments of
the geotechnical inputs themselves. It is difficult to dis-
cern the completeness of the historic point inventory
used as a proxy for landsides occurring in background
climatic conditions. This assumes that the 37 landslides
that have occurred between 2011 and 2021 in the study
areas are indicative of natural landslide occurrence
rates, but there is little evidence to support this assump-
tion. Preliminary work by the authors to generate dif-
ference maps between two series lidar datasets covering
a similar date range have not yielded useful results due
to quality level and spatial misalignment. As such, fur-
ther investigation of landslide reoccurrence rates from
lidar differencing is beyond the scope of this study. In
lieu of differenced topography, constrained non-land-
slide point selection is ultimately necessary, especially
with the uncertain distribution and frequency of land-
slide events. While the rapid reconnaissance inventory
has a large sample size to draw conclusions from, in-
ventories reflecting extreme conditions are not applica-
ble to assessments of model results based on
background climatic conditions. Instead, PISA-m
should be used in a way that accounts for extreme sce-
narios. While an effort was made to account for the ex-
treme conditions, using the program configuration
assessed in this study (an intentionally “off-the-shelf”
variety), PISA-m is likely not well equipped to model
this type of event. Further alterations to the pore pres-
sure values and statistical distribution are needed to ap-
proximate extreme events of this magnitude. If using
PISA-m for extreme event modeling, more specific cal-
ibration to an extreme event inventory would be useful.
PISA-m, even when approximating different scenarios
with parameter specifications, is still time independent.
For instance, using recorded peak pore pressure distri-
butions approaches a temporal model, but the specific
ranges of geotechnical values needed to precisely
model a given time period are unlikely to be obtained.
Matching the time-independent probability results of
PISA-m to failure rates and vice-versa can be more con-
fusing than clarifying for end users (Haneberg, 2015).

Visual inspection of the model results shows con-
sistency between the shale bed case and both USCS
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cases across both specifications. Either the distinct
methods of soil classification yield similar (and ulti-
mately real) landscape-controlled landslide susceptibil-
ity, or the geotechnical values used in each case do not
differentiate the soil inputs from one another. There are
several geotechnical value similarities across the mod-
els, and despite the spatial distributions being vastly dif-
ferent between the shale bed case and the USCS cases,
model results appear very similar. These similarities
may not be an indication of poor model performance,
however. Since these maps attempt to represent the
same in-situ value ranges for soils and other slope char-
acteristics, using similar values across the whole of the
landscape is likely the more practical approach. If the
values provided are extreme or an uncharacteristic dis-
tribution is applied, the results could include false pos-
itives. As a result, PISA-m appears less sensitive to the
spatial extents of the input soils layer and more sensi-
tive to the geotechnical values and probabilities as-
signed.

The widespread use of uniform distributions also con-
tributes to a lack of confidence in the Prob[FS < 1], but
the assumption of uniform distributions is necessitated
by a lack of detailed geotechnical data available (Hane-
berg, 2004). Parker et al. (2016) argued that uniform
distributions were valid in the southern Appalachians
for saturated unit weights (ysat), internal friction angles
(#), and soil cohesions (cs) but that uniform distribu-
tions poorly fit root cohesion (cr) and soil thicknesses
(D). Sidle and Wu (1999) found that soil cohesion and
internal friction angles could be assumed to be uni-
formly distributed over their simulations. Root cohe-
sion and morphology are noted as contributing more
substantially to the factor of safety equation (Simons et
al., 1978; Hammond et al., 1992). Additionally, as dis-
cussed, the height of the phreatic table (Hw) has a sig-
nificant impact on model results. While uniformity can
be assumed comfortably for some parameters, robust
characterization of key parameters such as root cohe-
sion and phreatic table height is advisable. Especially in
the case of scarce data availability, well-defined ge-
otechnical values and data distributions are essential for
effective PISA-m utilization. While there were signifi-
cant estimations made to assign geotechnical values,
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the spatial coverages of the soil units and the lidar-de-
rived map-based inputs were more certain. Specifically,
the use of high-resolution lidar derivatives to generate
the forest cover spatial input, as well as further pro-
cessing of the lidar-derived DEM, likely added to
PISA-m’s utility.

Conclusions

Eight distinct slope stability models, four cases across
two parameter specifications, were applied to PISA-m
and were assessed using two different inventories. The
focus of this study was to assess the flexibility of inputs,
the impact of sparse and uncertain geotechnical data,
and ultimately, the practicality of PISA-m for use in re-
gional landslide susceptibility modeling. By utilizing
high-resolution lidar inputs when possible and pru-
dently characterizing the geotechnical parameters, gaps
and uncertainties within available data can be ac-
counted for, and regional landslide susceptibility as-
sessments can be generated efficiently. While this study
did not assess the full range of possibilities, the easy-to-
implement probability functionality of PISA-m sepa-
rates the program from other physics-based models.
The flexibility of the model inputs, the translatable fac-
tor of safety output, the limited computing power re-
quired, and the shorter analysis time are all benefits of
using PISA-m. While this study assessed the sparse data
use case, proper geotechnical assessments should still
be conducted, if possible, to reduce significant sources
of error in the model. Specific attention should be
placed on deriving comprehensive data distributions
and value ranges for key parameters such as height of
phreatic table (Hw), root cohesion (cr) and soil/colluvial
thickness (D). While specific (extreme) scenario testing
was performed through parameter specification and
showed good merits when assessed, off-the-shelf
PISA-m settings and approximate, time-independent
geotechnical values should be used with caution. De-
spite these disclaimers, with good understanding of the
study area and justifiable approximations of the physi-
cal characteristics of the soils, PISA-m can use availa-
ble data to quickly generate regional susceptibility
maps that serve as first-order assessments.
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