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Technical Level 

General Intermediate Technical 
 

Computer models based on topography, soil properties, and  
water levels in hillsides can help identify areas susceptible to 
landslides triggered by rainstorms or human activity like logging, 
mining, or construction. This study compares results from one 
computer model, called PISA-m, using different kinds of soil 
property information to known landslide locations in parts of 

eastern Kentucky to evaluate the effectiveness of the model. 



Abstract 

Physics-based landslide modeling can be difficult and data-intensive. Generating high-

quality and practical map results is often not feasible outside of small, thoroughly char-

acterized study areas. Using the physics-based program Probabilistic Infinite Slope 

Analysis (PISA-m), users can perform expedient assessments of landslide hazard over 

large study areas where comprehensive geotechnical data may be lacking, but other data 

inputs are robust. PISA-m uses an infinite slope equation and spatial layers, such as a 

digital elevation model (DEM), a lidar-derived forest cover layer, and a soil map, to 

calculate the probability that the factor of safety (or FS) for an area will be less than or 

equal to one. Factor of safety values less than or equal to one often infer slope instabil-

ity. This investigation considers two landslide inventories, one reflecting the assumed 

background climatic conditions seen over a decade and the other gathered following an 

extreme rainfall event. These two weather scenarios were approximated with parameter 

specifications and used over four models based on different soil unit inputs: shale beds 

with alluvium and colluvium, 1:24,000 scale bedrock formations, United Soil Classifi-

cation System (USCS) distributions with geotechnical values derived from drilling re-

ports, and USCS distributions with generalized geotechnical values. Model results were 

symbolized as five susceptibility groups based on equal intervals of the probability of 

FS ≤ 1. The model results were compared to landslides that post-date the lidar DEM 

and non-landslide locations to evaluate the program’s accuracy as a regional landslide 

susceptibility tool. PISA-m results indicating a high probability (0.50–1.0) of FS ≤ 1 

around a landslide were considered true positives, while lower probabilities (0–0.50) 

for non-landslide areas were considered true negatives. Model accuracies varied across 

the models and study areas, averaging 78% for the background climatic conditions 

proxy and 82% for the extreme rainfall event area, with the best model accuracy of 84% 

for the shale bed case in the extreme event specifications. While these practical, first-

order landslide susceptibility model results are promising, these outcomes rely on ef-

fective use of high-resolution input data and expert knowledge of ground  

 characterization to bolster the lack of precise geotechnical descriptions. 



Introduction 

In Kentucky, landslides are estimated to directly cost 

$20 million a year (Crawford, 2014; Overfield et al., 

2015), with indirect costs likely greater. To assist in 

landslide hazard avoidance and mitigation, landslide 

susceptibility models are created. Approaches for sus-

ceptibility modeling are broadly classified as either sta-

tistics based or physics based (Soeters and Westen, 

1996; Crozier and Glade, 2005). Statistical models typ-

ically leverage geomorphic conditioning factors to pre-

dict landslide probability (Reichenbach et al., 2018). 

Alternatively, physics-based models couple geotech-

nical parameters of the soil and rock with slope stability 

and hydrological relationships to calculate metrics such 

as factor of safety based on the force balance acting on 

the slope (Formetta et al., 2016). Recent literature sug-

gests that these distinct modeling approaches can be 

combined as two-step assessments, leveraging statisti-

cal models as inputs for physics-based models and vice-

versa (Khabiri et al., 2023). Furthermore, these models 

can be classified as either deterministic or probabilistic, 

with empirical and rational subdivisions for both model 

classes. Deterministic models have distinguishable, set 

outcomes produced using known physical parameters 

and either rational governing equations or empirical re-

lationships, whereas probabilistic models are used to 

address random behavior in any of these physical pa-

rameters (Haneberg, 2000). The probabilistic modeling 

approach is suitable for landslide susceptibility analysis 

when a rational equation can be used to describe the 

slope failure mechanics, but precise input variable char-

acteristics are not well known.  

Statistical landslide susceptibility models are often used 

in contemporary landslide susceptibility studies (Reich-

enbach et al., 2018; Crawford et al., 2021). These ap-

proaches often require an inventory dataset, advanced 

GIS technology, and machine learning tools. In addi-

tion, models created from these approaches are often 

considered “black boxes,” making them unwieldy and 

difficult for researchers and end users to interpret. On 

the other hand, physics-based slope stability models are 

more interpretable and have been created for a wide 

variety of use cases (Montgomery and Dietrich, 1994; 

Wu and Sidle, 1995; Pack et al., 1998; Baum et al., 

2008; Capparelli and Versace, 2011). However, many 

physics-based modeling programs require comprehen-

sive geotechnical parameters, which can limit assess-

ments to small watershed-scale investigations (Soeters 

and Westen, 1996). Most of these models do not ac-

count for parameter uncertainty and variability, with 

only a few exceptions (Pack et al., 1998; Haneberg, 

2007). While the geotechnical parameter requirement 

exists universally in physics-based models, calculating 

probabilities using a range of geotechnical parameters 

can both account for natural variability inherent in the 

landscape and address the lack of precise geotechnical 

values. Despite these potential limitations, physics-

based models with landslide susceptibility presented in 

engineering terms like factor of safety are easy to inter-

pret and understand, making them appealing to a wide 

variety of mitigation managers and engineers. The ad-

ditional benefit of selecting a probabilistic and physics-

based modeling approach over a strictly deterministic 

approach is the ability to approximate the probability of 

factor of safety results as landslide susceptibility mod-

els. The aim of this study was to assess limited geotech-

nical parameters within the modeling program 

Probabilistic Infinite Slope Analysis (PISA-m). Addi-

tionally, PISA-m was evaluated for practicality at a re-

gional scale, and the inherent challenges of parameter 

uncertainty were addressed. To evaluate model accu-

racy, PISA-m results were compared to known land-

slide occurrences from two landslide point inventories. 

Study Area 

The primary study area, referred to as location 1, was 

defined as a band stretching across portions of four east-

ern Kentucky counties in which a rapid reconnaissance 

landslide inventory was performed following the July 

2022 extreme rainfall and flooding event (Crawford et 

al., 2023; NWS, 2023; Fig. 1). The area comprising lo-

cation 1 was defined by the extent of an extreme pre-

cipitation event in July 2022 and covers ~1250 

km2 (480 mi2) in Breathitt, Knott, Owsley, and Perry 

counties. 



 

Figure 1. Location 1, defined as the approximate area affected by an extreme rainfall event in July 2022. For this location, 

results were generated with parameter specifications that approximated background climatic conditions and utilized a rec-

orded historic landslide inventory for assessment (Crawford, 2022). Additionally, a second parameter specification approx-

imated an extreme rainfall event and used the rapid reconnaissance landslide inventory corresponding to the July 2022 

rainfall event (Crawford et al., 2023). Yellow squares denote insets used in Figures 4, 6, and 7. 



 
Figure 2. Location 2, the study area defined as the extent of 

Magoffin County, Kentucky. For this location, results were 

generated with a parameter specification that modeled back-

ground climatic conditions and used a historic landslide in-

ventory (Crawford, 2022).  

Location 1 has an average slope of 21.8°. This area was 

selected based on known landslide occurrences and the 

availability of landslide inventories with known failure 

dates that occurred after the collection of digital eleva-

tion model (DEM) ground data. A second study area 

was included to add to the background climatic condi-

tion landslides counts and test PISA-m’s utility at the 

county scale. This study area, known as location 2, was 

defined as the extent of Magoffin County (Fig. 2), 

which was selected in part because of the digitized land-

slide inventory present in the area (Crawford et al., 

2021). Location 2 covers ~881 km2 (310 mi2) and has 

an average slope of 21.4°. The topography of both study 

areas is characterized by steep, narrow, sinuous valleys 

carved by unglaciated, dendritic fluvial systems. Both 

areas have undergone varying degrees of surface and 

underground coal mining, logging, and infrastructure 

construction. Bedrock geology in both areas comprises 

nearly flat-lying Middle Pennsylvanian sedimentary 

strata, specifically sandstones, limestones, siltstones, 

shale, coal seams, and underclays (McDowell, 1986; 

Greb et al., 2009). Marine and organic shale beds exist 

in the study areas and have been mapped as distinct rock 

units. These shale beds are noteworthy and provide in-

sight into landslide occurrence, as shale, coal, and un-

derclay beds are known to weather easily (Outerbridge, 

1987; Crawford, 2014; Chapella et al., 2019). The bed-

rock is overlain by colluvium of variable thickness, in 

which deposition is primarily controlled by mass wast-

ing processes such as landslides (McDowell, 1986). 

Landslides in the colluvium are typically thin (less than 

3 m deep) translational or thicker rotational landslides. 

Both translational and rotational landslides have the po-

tential to develop into debris flows (Crawford, 2014; 

Crawford et al., 2021).  

Methods  

PISA-m 

PISA-m is a physics-based probabilistic slope stability 

modeling program that utilizes the first-order, second-

moment (FOSM) implementation of the infinite slope 

equation developed by the U.S. Department of Agricul-

ture Forest Service for the LISA and DLISA programs 

(Hammond et al., 1992; Haneberg, 2007). The infinite 

slope equation is itself an approximation of slope fail-

ure mechanics. The infinite slope equation assumes an 

infinitely long slope plane with a parallel failure sur-

face; specifically, the length of the landslide is much 

larger than the thickness to the failure plane (Dai and 

Lei, 2025). This approximation does not translate well 

to thicker movements or complex failure geometries; 

however, most landslides in eastern Kentucky are thin, 

translational slope failures (Crawford et al., 2021), and 

the infinite slope equation is therefore a reasonable ap-

proximation. The infinite slope factor of safety equation 

used in PISA-m (Hammond et al., 1992; Haneberg, 

2004, 2007) is 

, (1) 



where FS corresponds to a factor of safety value, cr is 

the cohesive strength from tree roots in Pa, cs is the co-

hesive strength of soil in Pa, qt is a uniform surcharge 

exerted by vegetation in Pa, γm is the unit weight of 

moist soil in N/m3, γsat is the unit weight of saturated 

soil in N/m3, γw is the unit weight of water, D is the 

thickness of soil above slip surface in m, Hw is the unit-

less height of the phreatic surface (relative to the water 

table) above slip surface, β is the slope angle in degrees, 

and ϕ is the angle of internal friction in degrees. 

Infinite slope models assume that 1) the failure plane is 

parallel to the topographic and phreatic surfaces, 2) the 

failure plane extends infinitely in all directions, and 3) 

there is a single soil layer with uniform properties 

(Hammond et al., 1992). Despite these assumptions, in-

finite slope models and PISA-m are useful reconnais-

sance tools for characterizing the landslide hazard in an 

area.  

PISA-m uses mean values of the parameters in Equation 

1 to calculate a mean FS value, 

, (2) 

and a truncated Taylor series approximation of the FS 

variance (the square of the standard deviation; Hane-

berg, 2004, 2007), 

. (3) 

Once the mean and variance have been calculated, 

probability of FS ≤ 1 (Prob[FS ≤ 1]) is determined by 

calculating the value of the cumulative distribution 

function of FS at a value of FS = 1, where FS is assumed 

to be log-normally distributed. Haneberg (2004, 2012) 

evaluated the validity of an a priori log-normal assump-

tion for FOSM infinite slope models and found the log-

normal assumption to work well in most situations. The 

FOSM approach implemented by PISA-m assumes that 

the input parameters are uncorrelated; however, corre-

lation among parameters can be included in FOSM ap-

proximations (Haneberg, 2016). Because the FOSM 

approximation is non-iterative (as opposed to computa-

tionally intensive Monte Carlo simulations and other it-

erative algorithms), PISA-m can generate usefully 

reliable results in a fraction of the time that would be 

required by an iterative simulation. This speed and 

computational simplicity are useful when working with 

large, high-resolution DEMs over regional scales. 

Model Requirements 

PISA-m requires a DEM, map layers representing soils 

and forest cover, and a plain text parameter file. In this 

study, the DEM provided the basis for slope angle cal-

culation, and the soils and forest cover map layers pro-

vided detailed spatial extents for the geotechnical data. 

The parameters file was used to assign model settings 

and geotechnical parameters (cohesions, internal angle 

of friction, surcharge, soil depth, pore pressure coeffi-

cient, and unit weights) to the soils units present in the 

map layers. The parameters file listed the geotechnical 

values that were assigned to the spatial extents defined 

by the input soils and forest cover layers, along with a 

probability distribution for each variable. The parame-

ters file can also be used to enable slope stability calcu-

lations based on seismic activity, similar to Newmark 

analysis (Newmark, 1959; Haneberg, 2004).  

Data Distributions 

Using the FOSM probabilistic method, PISA-m can ef-

fectively account for uncertainty by allowing the user 

to select the most appropriate data distributions for each 

geotechnical parameter. PISA-m is equipped with sev-

eral data distribution types; those relevant to this study 

and discussion are normal, uniform, and extreme value 

type I (or Gumbel) distributions. These distributions 

and other are described in Haneberg (2007). Parameter 

values used in PISA-m can also be scalar constants, in 

which case there is no distribution assigned. 

Model Cases 

As PISA-m has the ability to compute Prob[FS ≤ 1] 

quickly over large datasets and account for imprecise 

geotechnical values and the uncertainty intrinsic in nat-

ural landscapes, it is well suited for reconnaissance or 

regional landslide assessments. This investigation eval-

uates PISA-m as a regional landslide susceptibility 

modeling tool, specifically in the common use case of 

sparse geotechnical data, by computing eight suscepti-

bility models using four soil input layers and parameter  



Table 1. The eight models, four cases over two specifications, used to evaluate the practicality and utility of the PISA-m 

slope stability program for landslide susceptibility models. 

[Abbreviations: KYTC, Kentucky Transportation Cabinet; USCS, Unified Soil Classification System; SSURGO, Natural Resources Conservation 

Service Soil Survey Geographic Database] 

Model Parameter specification Soil input case Assessment inventory 

A1 

A. Approximating background climatic conditions 

1. Shale bed 

Historic 
A2 2. Geological formation 

A3 3. USCS (SSURGO) 

A4 4. Generalized USCS (SSURGO) 

B1 

B. Approximating extreme rainfall event 

1. Shale bed 

Rapid reconnaissance 
B2 2. Geological formation 

B3 3. USCS (SSURGO) 

B4 4. Generalized USCS (SSURGO) 

specifications approximating two climatic scenarios de-

fined by landslide inventories within eastern Kentucky 

study areas. These eight models, with each of the four 

soil inputs applied to both parameter specifications, are 

outlined in Table 1. These models are defined by unique 

input soils map layers and associated geotechnical data. 

Geotechnical data were obtained from Kentucky Trans-

portation Cabinet (KYTC) reports and related publica-

tions, with the exception of a generalized case using 

typical values for Unified Soil Classification System 

(USCS) classes for comparison.  

The climatic scenarios assessed over the eight models 

were selected based on the availability of landslide in-

ventories for model validation. Validation was done us-

ing the statewide historic inventory (Crawford, 2014, 

2022), which represents typical landslide conditioning 

factors, and the July 2022 extreme rainfall inventory 

(Crawford et al., 2023), which represents extreme 

event-based conditions. Inventory landslides that oc-

curred after the date of DEM data collection were inter-

sected with the PISA-m results to estimate PISA-m 

performance. Using both inventories for validation al-

lowed the performance of PISA-m to be assessed for 

both typical and extreme scenarios, or rather for both 

time-independent and event-specific scenarios. 

Model Inputs 

DEM 

The DEM was derived from airborne lidar data and pro-

cessed to a United States Geological Survey (USGS) 

Quality Level of 2 (Heidemann, 2012) with a spatial 

resolution of 1.5 m (5 ft). The DEM was resampled to 

~3 m (10 ft) cell size for computing efficiency. Differ-

ences in preliminary results were not apparent when 

comparing models created from the 1.5 m DEM to mod-

els created from the 3 m DEM (Crawford et al., 2019). 

The DEM was “smoothed,” a local averaging of eleva-

tion values using neighboring values within a moving 

circular window, to remove potential errors and holes 

in the DEM and reduce noise in the output PISA-m 

models. Window size was chosen through comparative 

testing of 7.5 m (25 ft) increments, and a radius of 15 m 

(50 ft) was found to best preserve the unsmoothed topo-

graphic characteristics of the DEM while minimizing 

noise and potential anomalies. 

Forest Cover 

The forest cover map input shows spatial distributions 

of forested areas to satisfy the tree surcharge and root 

strength components of the infinite slope equation. The 

National Land Cover Database (NLCD; Dewitz and 

U.S. Geological Survey, 2021) raster was reclassified 

using existing forest cover classes to serve as a binary 

raster of forested and bare areas. The NLCD raster was 

far coarser than the other inputs used and showed jag-

ged edges even after resampling. An alternative forest 

cover extent raster was created by processing lidar point 

cloud data using a procedure similar to that described 

by Swallom et al. (2025). The DEM was subtracted 

from unclassified lidar returns to obtain vegetation 

height, which was further divided into forested and bare 

categories based on a 5 m (16.4 ft) threshold for trees 

(FGDC, 2008). Further processing was performed by 

smoothing the initial tree layer with a ~7.5 m (25 ft) 



moving circular window (based on tree crown envelope 

diameters) to reduce noise in the forested areas. Com-

parison with aerial photography acquired in the same 

year as the lidar data showed consistency with the pho-

tographed canopy (Fig. 3). 

Soil Layer Variation 

Three soil map layers were used across the eight mod-

els: a map of shale beds, a bedrock formation map, and 

a soils map represented by USCS classes.  

The shale bed layer (used for case 1) was modified from 

Chapella et al. (2019) and used the known influence of 

shale beds on landslide occurrence (Outerbridge, 1987; 

Crawford, 2014; Chapella et al., 2019). To spatially 

highlight shale beds, shale arc polylines were buffered 

to a ~30 m (100 ft) width and appended to a 1:24,000 

bedrock lithology map in GIS. The geological units 

were combined into a single colluvium group, assuming 

near homogenous colluvial soil composition across the 

geological units. This was similar to the approach of 

Haneberg et al. (2009), who used surficial mapping to 

distinguish between areas of thick and thin colluvium 

in a project area in San Francisco. 

The geological layer (used for case 2) used a 1:24,000 

scale bedrock formation map as a proxy for soil type. 

This method assumed that bedrock formation spatial 

extents are useful predictors of the soil geotechnical pa-

rameters used in PISA-m and was similar to the 

bedrock-based approach taken by Stillwater Sciences 

(2007) and Weppner et al. (2008).  

The soils map used broad Natural Resources Conserva-

tion Service Soil Survey Geographic Database 

(SSURGO; NRCS, 2023) spatial extents grouped into 

USCS soil units. The soil map layer is used for both 

case 3 and 4.  

These layers, along with the DEM and binary forest 

cover raster maps, were clipped to the study areas and 

converted to ASCIIs for use in PISA-m. The DEM and 

forest cover layers were used for all eight models 

(Fig. 4). 

Geotechnical Inputs  

The geotechnical input parameters and values used 

were split into two groups based on climatic/rainfall 

scenarios. The typical background climatic conditions, 

approximated with geotechnical parameters in specifi-

cation A (models A1–A4), were used to model land-

slide probabilities in static, non-seasonal conditions. 

Therefore, the geotechnical values used as PISA-m in-

puts needed to represent a full range of possible values 

throughout a year or many years. In order to assess the 

utility of PISA-m for modeling slope stability following 

an extreme rainfall event, models B1–B4 needed to ac-

count for the impact of the rainfall event by using more 

characteristic geotechnical values. This was done by 

modifying the distribution and value range of the  

 

Figure 3. Comparison of the National Land Cover Database (Dewitz and U.S. Geological Survey, 2021) forest cover layer, 

the lidar-derived forest cover layer, and the canopy as seen from 2012 aerial photography (NAIP, 2012). 



normalized height of the phreatic table (Hw) parameter 

to approximate full saturation of slopes during the ex-

treme rainfall event. When these geotechnical values 

were not modified to account for the extreme rainfall 

event, preliminary model results underpredicted land-

slide occurrence when compared the extreme event in-

ventory. Despite the phreatic table consideration and 

the order of magnitude difference in temporal scale, 

many of the other geotechnical values used were con-

sistent between the cases and specifications due to data 

scarcity and the simplified nature of this study.  

The geotechnical values used for cases 1–3 were modi-

fied from geotechnical boring information from KYTC 

and applicable studies (Sidle et al., 1985; Hammond et 

al., 1992; Haneberg, 2004; Chapella et al., 2019; Tables 

2–4). The generalized soil case, 4, used easily accessi-

ble and generalized geotechnical examples for input 

data, such as those defined in textbooks (Anderson and 

Sitar, 1995; Budhu, 2007; Das, 2010; Table 5). Ge-

otechnical values related to forest cover were gathered 

from similar studies that also used this version of the 

infinite slope equation (Hammond et al., 1999; 

Chapella et al., 2019; Table 6). Modifications made to 

these datasets included the reduction of internal friction 

angles (ϕ) and the zeroing of soil cohesion (cs). These 

modifications have been used in similar analyses in the 

regional analogues of western Pennsylvania and 

Wheeling, West Virgina (Hamel, 1980; Haneberg, 

2004), to represent residual shear strength characteris-

tics instead of peak or typical shear strength. It is un-

clear if the geotechnical data sources used in this study 

report peak shear strength, so the reductions were per-

formed as a precautionary measure.  

As for distributions, a uniform distribution was used for 

a majority of the geotechnical variables due to limited 

information regarding the distribution shapes of the var-

iables (Hammond et al., 1992). Two exceptions to the 

uniform distribution selection were tree surcharge, 

which used a normal distribution as prescribed by 

Chapella et al. (2019), and specification A phreatic ta-

ble height, which used an extreme value type I distribu-

tion. Characterizing the phreatic table height (Hw) is 

particularly difficult due to variation caused by the  

 

Figure 4. Inset examples of PISA-m input layers used for 

this study: the DEM, forest cover layer, and three soil map 

layers used in the eight models (shale bed, geological for-

mation, and the UCSC soil classes). The numbers to the left 

of the soil layers correspond to model cases detailed in  

Table 1. 



Table 2. Geotechnical values for the combined geological units (colluvium group), alluvium, and shale beds, modified from Kentucky Transportation Cabinet drilling 

report data and additional studies (Sidle et al., 1985; Hammond et al., 1992; Haneberg, 2004; Chapella et al., 2019). 

Variable Model Distribution 
Alluvium Colluvium Shale 

Min. Max. Min. Max. Min. Max. 

Internal friction, ϕ (deg) A1, B1 Uniform 17 33 22 33 17 24 

Cohesion, cs (Pa) A1, B1 Uniform 0 0 0 

Soil thickness, D (m) A1, B1 Uniform 6.1 12.2 1.5 18.3 0.61 43.9 

Pore pressure coefficient, from Hw (unitless) A1 Extreme1 0.5 0.1 0.5 0.1 0.5 0.1 

Hw (unitless) B1 Uniform 0.75 1 0.75 1 0.75 1 

Saturated unit weight, γsat (N/m3) A1, B1 Uniform 19,680.52 21,719.96 18,252.92 22,943.61 21,210.10 23,147.56 

Moist unit weight, γm (N/m3) A1, B1 Uniform 19,068.69 22,369.16 15,091.80 24,065.30 20,904.18 26,614.59 

 1Extreme (Gumbel) distribution uses location and shape parameters instead of the minimum and maximum values used by the uniform distribution. 

Table 3. Geotechnical values for bedrock formations, modified from Kentucky Transportation Cabinet drilling report data and additional studies (Sidle et al., 1985; 

Hammond et al., 1992; Haneberg, 2004; Chapella et al., 2019).  

Variable Model Distribution 
Alluvium Four Corners 

Grundy, Hyden, 

and Pikeville 
Princess 

Min. Max. Min. Max. Min. Max. Min. Max. 

Internal friction, ϕ (deg) A1, B1 Uniform 17 33 17 24 17 24 15 27 

Cohesion, cs (Pa) A1, B1 Uniform 0 0 0 0 

Soil thickness, D (m) A1, B1 Uniform 0.3 0.91 0.61 3.05 0.61 43.9 0.3 0.91 

Pore pressure coefficient, from Hw (unitless) A1 Extreme1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 

Hw (unitless) B1 Uniform 0.75 1 0.75 1 0.75 1 0.75 1 

Saturated unit weight, γsat (N/m3) A1, B1 Uniform 18,850.50 20,892.64 20,421.38 22,306.43 17,436.71 21,992.25 17,436.71 21,992.25 

Moist unit weight, γm (N/m3) A1, B1 Uniform 17,907.98 22,306.43 20,107.20 25,605.26 14,452.05 23,091.86 14,452.05 23,091.86 

 1Extreme distribution uses location and shape parameters instead of the minimum and maximum values used by the uniform distribution. 

  



Table 4. Geotechnical values for United Soil Classification System units, modified from Kentucky Transportation Cabinet drilling report data and additional studies 

(Sidle et al., 1985; Hammond et al., 1992; Haneberg, 2004; Chapella et al., 2019).  

Variable Model Distribution 
CL, Cl-ML CG, GC-GM ML, OH SC-SM SM 

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. 

Internal friction, ϕ (deg) A1, B1 Uniform 24 32 24 33 23 33 24 31 23 33 

Cohesion, cs (Pa) A1, B1 Uniform 0 0 0 0 0 

Soil thickness, D (m) A1, B1 Uniform 1.5 18 1.5 18 6 12 1 6 6 12 

Pore pressure coefficient, 

 from Hw (unitless) 

A1 Extreme1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 

Hw (unitless) B1 Uniform 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 

Saturated unit weight, γsat 

 (N/m3) 

A1, B1 Uniform 17,986.81 19,997.56 19,997.56 21,992.60 15,991.76 21,992.60 17,986.81 19,997.56 17,986.81 19,997.56 

Moist unit weight, γm 

 (N/m3) 

A1, B1 Uniform 13,981.01 17,908.26 14,986.39 16,965.72 13,981.01 20,892.97 12,991.34 15,991.76 12,991.34 15,991.76 

 1Extreme distribution uses location and shape parameters instead of the minimum and maximum values used by the uniform distribution. 

Table 5. Geotechnical values for United Soil Classification System units, derived from a data repository hosted by www.geotechdata.info and other accessible, 

generalized data (Anderson and Sitar, 1995; Budhu, 2007; Das, 2010). 

Variable Model Distribution 
CL, Cl-ML CG GC-CM ML OH SC-SM SM 

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. 

Internal friction,  
 ϕ (deg) 

A1, B1 Uniform 24 32 25 32 27 37 24 32 22 32 27 37 24 30 

Cohesion, cs (Pa) A1, B1 Uniform 0 0 0 0 0 0 0 

Soil thickness,  
 D (m) 

A1, B1 Uniform 1.5 18 1.5 18 1.5 18 6 12 6 12 1 6 6 12 

Pore pressure  

 coefficient, from  
 Hw (unitless) 

A1 Extreme1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 

Hw (unitless) B1 Uniform 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1 

Saturated unit  
 weight, γsat  

 (N/m3) 

A1, B1 Uniform 14,000.00 18,000.00 20,000.00 22,000.00 20,000.00 22,000.00 16,000.00 22,000.00 16,000.00 22,000.00 18,000.00 20,000.00 18,000.00 20,000.00 

Moist unit weight,  
 γm (N/m3) 

A1, B1 Uniform 18,000.00 20,000.00 15,000.00 17,000.00 15,000.00 17,000.00 14,000.00 21,000.00 14,000.00 21,000.00 13,000.00 16,000.00 13,000.00 16,000.00 

 1Extreme distribution uses location and shape parameters instead of the minimum and maximum values used by the uniform distribution. 

http://www.geotechdata.info/


Table 6. Geotechnical values for tree surcharge and root co-

hesions, modified from Chapella et al. (2019). Bare cover 

was considered as a constant of zero. 

Variable Distribution Min. Max. Mean 
Standard 

deviation 

Root cohesion,  

 cr (Pa) 

Uniform 5,700 6,900 — — 

Tree surcharge,  

 qt (Pa) 

Normal  — — 2,500 ±500 

frequency and duration of rainfall events as well as an-

tecedent moisture conditions (Haneberg, 2000). Hane-

berg (2000) describes the significant impact of 

normalized phreatic table height (Hw), and the related 

pore pressure coefficient, on changes to factor of safety. 

To accurately account for the pore pressure coefficient, 

the extreme value type I distribution was used to ap-

proximate annual variation (Weppner et al., 2008) for 

the analyses in models A1–A4. Models B1–B4 instead 

had geotechnical values and distributions selected with 

the rainfall duration and frequency data recorded over a 

four-day extreme rainfall event (Crawford et al., 2023) 

in mind. In general, soil moisture conditions before and 

during rainfall events are not well known or character-

ized. Haneberg and Gökce (1994) considered soil mois-

ture characteristics observed from a landslide deposit in 

colluvial slopes near Cincinnati, Ohio, and found that 

soil moisture responded rapidly to rainfall events. Con-

sidering the relatively dry summer season experienced 

in eastern Kentucky in July 2022 and the magnitude of 

the extreme rainfall event (NWS, 2023), lag effects may 

not be applicable, and a similarly rapid rise in phreatic 

table height may be assumed for this event. As such, 

values for Hw with a uniform distribution were selected 

in specification B (models B1–B4) to represent near or 

fully saturated conditions. 

Model Assessment Method 

To quantify the performance of the PISA-m models, 

buffered landslide points were intersected with the re-

sults. These points represented historic landslides that 

occurred after DEM creation in locations 1 and 2 

(~2012 for areas within Perry County and Magoffin 

County, ~2017 for other areas) and the landslides iden-

tified from rapid reconnaissance following a July 2022 

extreme rainfall event (Crawford et al., 2023). A total 

of 37 historic landslides (16 in location 1 and 21 in 

location 2) with failure dates between 2011 and 2022 

were used to represent the background climatic scenario 

and assess models A1–A4. For models B1–B4, which 

used parameter specifications to approximate the ex-

treme rainfall scenario, 1,068 landslides from the rapid 

reconnaissance inventory were used to assess model 

performance. The observed landslides in the rapid re-

connaissance inventory correspond to a small date 

range (July 14–18, 2022). The extreme rainfall scenario 

(and related specification B) is defined by an anomalous 

four-day rainfall total of 360–410 mm (14–16 in.). In 

comparison, over the decade considered in the back-

ground climatic conditions scenario (and specification 

A), average total annual rainfall was 130 mm for loca-

tion 1 and 110 mm for location 2 (PRISM, 2024). The 

historic inventory landslides with recorded dates 

largely occurred within late winter and early spring. 

Figure 5 compares rainfall to historic landslide  

occurrences.  

 

Figure 5. Histogram of landslide counts (blue bars) from the 

historic inventory in the study area compared to average 

rainfall data from PRISM (black line).  

To approximate a landslide deposit and to cover poten-

tial initiation zones, an arbitrary ~15 m (50 ft) buffer 

was assigned to each point and intersected with the 

PISA-m model results. This arbitrary buffer was used 

for ease of reproducibility in situations of information 

scarcity. In most instances, 15 m may be an underesti-

mation of landslide initiation zone sizes. However, this 

smaller size constraint on the inventory buffers used for 

PISA-m assessment was preferred over capturing dis-

tant high Prob[FS ≤ 1] values that were disconnected 



from the landslide in question. The buffered landslide 

points were used to gather the mean and maximum 

Prob[FS ≤ 1] value from each landslide area. Higher 

mean probability values (i.e., Prob[FS ≤ 1] > 0.50) for 

known slope failure areas were considered accurate 

model characterization (Haneberg, 2004; Chapella et 

al., 2019). Accurate prediction/success rates were de-

termined by assessing the number of landslides in each 

inventory that intersected with Prob[FS ≤ 1] > 0.50  

areas. 

Further, the models were checked for overfitting, which 

could result in the model predicting high susceptibility 

across the entire landscape. To perform an overfitting 

assessment, an equal number of negative samples, or 

non-landslide points, are needed to balance the land-

slide points. As such, to assess models A1–A4, 37 non-

landslide points were needed to balance the historic  

inventory, and to assess models B1–B4, 1,068 non-

landslide points were needed balance the rapid recon-

naissance inventory. These non-landslide points were 

also buffered 15 m and intersected with model results. 

Although using an equal number of positive and nega-

tive samples avoids bias towards the larger class 

(Blagus and Lusa, 2010), landslide assessment would 

imply a much larger area of non-landslide activity. To 

constrain non-landslide point selection to be more rep-

resentative of these stable environments, GIS-based 

controls were applied. First, buffers of ~60 m (200 ft) 

were generated around landslide points from both the 

historic and rapid reconnaissance inventories and 

around digitized landslide deposit extents in location 2 

only (Crawford et al., 2021, 2023). Digitized landslide 

extents were not available in location 1 during this 

study. These buffered landslide areas were omitted 

from non-landslide point selection areas. Second, mean 

slope angles from each landslide inventory were deter-

mined and used as approximate thresholds for slopes 

more primed for failure. As such, areas above 24.3° for 

location 1 and 28.9° for location 2 were omitted from 

the non-landslide selection area. This slope angle 

thresholding was done to ensure that existing but un-

confirmed or unmapped landslides were not considered 

in model assessment. Third, to minimize the effects of 

the random generation, such as non-landslide points 

clustering in similar topographic areas, five distinct 

non-landslide point datasets were randomly generated 

for each location. Each of these five non-landslide point 

datasets was intersected with model results, and those 

five sets of intersections were averaged to produce the 

single non-landslide dataset needed for Prob[FS ≤ 1] 

comparisons. This averaging of non-landslide datasets 

worked as a form of cross validation.  

To consider potential bias of the roadway-based recon-

naissance efforts that created the extreme event inven-

tory, the rapid reconnaissance inventory was intersected 

with a Euclidean distance-to-roads raster. This showed 

an average distance from slides to roadways of 54 m 

(177 ft), with a maximum distance of ~1,130 m (3,700 

ft). Noting these distances, non-landslide points were 

generated within 61 m (200 ft; mean distance from road 

plus radius of landslide area) and 305 m (1,000 ft) of 

roads in the study area, with slope angle thresholds and 

landslide areas considered. These landslide and non-

landslide area intersections with the PISA-m results 

were assessed using confusion matrices. True positives 

(TP) were determined from intersections of 

Prob[FS ≤ 1] > 0.50 with landslide areas, and where 

landslide areas intersected with Prob[FS ≤ 1] < 0.50, 

they were classed as false negatives (FN).  Model re-

sults of Prob[FS ≤ 1] > 0.50 that intersected known non-

landslide areas were considered false positives (FP), 

and results with Prob[FS ≤ 1] < 0.50 in non-landslide 

areas were classed as true negatives (TN). Model per-

formance is defined by confusion matrix accuracy 

(ACC), which is calculated as 

, (4) 

where accuracy is derived from the relationship be-

tween the sum of TP and TN divided by the sum of all 

classifications (Ting, 2017; Chicco and Jurman, 2020).  

Chicco and Jurman (2020) proposed the adoption of the 

Matthews correlation coefficient (MCC). MCC uses an 

approximate calculation of the Pearson product-mo-

ment correlation coefficient (Powers, 2011). MCC is 

defined by 

(5) 



and is normalized with 

(6)

Normalized MCC was assessed as a check for other 

metrics. The MCC metric focuses on correct predic-

tions, TP and TN, and returns a favorable score when 

those cases are a majority of the assessment. MCC is 

best utilized on unbalanced datasets, but the focus on 

TP and TN majority is useful even for intentionally bal-

anced cases such as this assessment.  

Results 

Results for each of the eight models were computed for 

Prob[FS ≤ 1] under static (non-seismic) conditions and 

imported into GIS for further analysis. The resulting 

Prob[FS ≤ 1] raster maps were symbolized as five 

groups based on equal intervals, following Kentucky 

Geological Survey (KGS) conventions (Crawford et al., 

2021). Slope angles below 5° were automatically omit-

ted from the model results. 

Specification A 

Background Climatic Scenario 

PISA-m results were similar for each of the specifica-

tion A models, highlighting planar slope faces and sub-

tle cliff and bench topography with Prob[FS ≤ 1] of 0.50 

or higher. For the shale bed cases and both USCS cases, 

the smooth planar slopes, as well as where the slopes 

transition into hollows, were uniformly classified with 

Prob[FS ≤ 1] > 0.50. In the geological formation case, 

these same areas of planar slope faces and hollow tran-

sitions had a wider range of Prob[FS ≤ 1] values pre-

sent. The geological formation case also had a more 

pronounced influence from the forest cover layer, espe-

cially where low slope angle areas near ridgetops had 

gaps in the canopy. These holes in forest cover were 

represented in PISA-m model results by stark concen-

trations of high Prob[FS ≤ 1] > 0.50. In general, areas 

of lower slope angles had Prob[FS ≤ 1] < 0.50. 

Prob[FS ≤ 1] > 0.50 values were dominant in areas 

where incision was sharper and slope angles increased. 

Differences between the two USCS cases were very 

small, with the generalized case having overall lower 

Prob[FS ≤ 1] values in some areas (particularly broad 

hollows). The shale bed case was the only model result-

ing in higher Prob[FS ≤ 1] values near the ridgetops. 

Inset examples for specification A model results are 

seen in Figure 6 and Figure 7.  

Specification B 

Extreme Rainfall Scenario  

The specification B models characteristically had a sig-

nificant coverage of high Prob[FS ≤ 1] values across the 

landscape. PISA-m models with this specification at-

tempted to account for the extreme rainfall event pre-

cipitation and subsequent increase in landslide 

occurrence by adjusting the model inputs and as a re-

sult, a majority of the landscape was considered suscep-

tible to landslide occurrence. That is, PISA-m 

calculated Prob[FS ≤ 1] > 0.50 for nearly all slopes 

above 22°. The geological formation case had a wider 

range of Prob[FS ≤ 1] values represented, preserving 

wide benches in the hillsides as areas where 

Prob[FS ≤ 1] < 0.50. The shale bed case and both USCS 

cases output Prob[FS ≤ 1] > 0.50 for a majority of the 

slopes. These cases were largely indistinguishable from 

one another, with a slight reduction in the overall 

Prob[FS ≤ 1] values in the generalized USCS case (B4) 

and report-derived USCS case (B3). Shale bed and 

USCS results extended Prob[FS ≤ 1] > 0.50 to the ridge-

tops, whereas the geological formation case (B2) indi-

cated lower Prob[FS ≤ 1] values near ridgetops, these 

value reductions matching the mapped extent of a sand-

stone unit. Similar to the results for specification A, 

these formation-controlled areas with low Prob[FS ≤ 1], 

as well as other low slope angle areas, show that clear-

ings in the forest cover raster influence model results. 

Inset examples of the model results for specification B 

can be seen in Figure 7. Area coverage percentages for 

each susceptibility group are shown in Table 7.  

Model Assessment Results 

Model results were intersected with landslide and non-

landslide areas. Success rates (only considering TP) for 

each model are shown in Table 8. 



 

Figure 6. Inset PISA-m results for the four cases using the parameters in specification A, which approximates a background 

climatic conditions scenario. Models numbered and labeled per Table 1. 



 

Figure 7. Inset PISA-m results for the four cases using the parameters in specification B, which approximates an extreme 

rainfall event scenario. Models numbered and labeled per Table 1.



Table 7. Percent area coverages of the Prob[FS ≤ 1] model 

results divided into five equal interval groups for each 

model. 

Model 
Prob[FS ≤ 1] 

0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 

A1 28.6% 6.8% 6.9% 9.0% 48.6% 

A2 36.7% 8.6% 9.0% 12.3% 33.5% 

A3 31.1% 6.9% 6.9% 9.0% 46.2% 

A4 31.7% 6.4% 6.4% 8.2% 47.3% 

B1 17.0% 4.0% 4.3% 6.0% 68.8% 

B2 24.7% 6.4% 7.1% 10.8% 51.0% 

B3 17.2% 3.7% 3.9% 5.5% 69.8% 

B4 17.7% 3.3% 3.4% 4.7% 70.8% 

Table 8. Success rates of each model with the respective 

landslide inventory.  

Inventory Model Success rate (%) 

Historic 

A1 75.7 

A2 75.7 

A3 78.4 

A4 78.4 

Rapid reconnaissance 

B1 83.5 

B2 75.7 

B3 82.5 

B4 81.9 

Further assessment included non-landslide points along 

with the landslide points to calculate metrics based on 

confusion matrix relationships. The historic inventory 

points for both location 1 and 2 were used for the spec-

ification A models, or those approximating a back-

ground climatic scenario, and when paired with the 

averaged non-landslide dataset yielded confusion ma-

trix derived model accuracies of 72.97%, 82.43%, 

79.73%, and 77.03% for the shale bed, geological for-

mation, report-derived USCS, and generalized USCS 

cases, respectively. To assess specification B models, 

or those approximating the extreme rainfall scenario, a 

two-tailed Student’s t-test (Kalpić et al., 2011) was used 

to test for similarity in the non-landslide points concen-

trated around roadways. Non-landslide points within 

300 m of roads did not have statistically distinguishable 

mean Prob[FS ≤ 1] values from those of non-landslide 

points generated more than 300 m from the roadway 

(p > 0.05). However, points generated within 61 m of 

roads were statistically distinct from points from across 

the study area (p < 0.05). Since the rapid reconnaissance 

inventory points were on average 54 m from the 

roadway, the roadway-constrained non-landslide points 

were considered more suitable for comparison to the 

rapid reconnaissance inventory. Additionally, model 

accuracies improved by about 5% when using the road-

way-constrained negative samples. The rapid recon-

naissance inventory, when compared to an averaged, 

roadway-constrained, non-landslide dataset, showed 

model accuracies of 84.04%, 83.90%, 83.52%, and 

83.33% for the shale bed, geological formation, report-

derived USCS, and generalized USCS cases, respec-

tively. The additional assessment metrics beyond con-

fusion matrix accuracy indicate stable model results 

(Table 9). Confusion matrix assessments for both spec-

ifications are seen in Figures 8 and 9. 

Table 9. Performance metrics across all models. In general, 

model performance was consistent across metrics. 

Model Accuracy (%) 
Matthews Correlation  

Coefficient, normalized (nMCC) 

A1 72.97 0.73 

A2 82.43 0.83 

A3 79.73 0.8 

A4 77.03 0.77 

B1 84.04 0.84 

B2 83.90 0.84 

B3 83.52 0.84 

B4 83.33 0.83 

Discussion 

Using PISA-m to model an extreme scenario (specifi-

cation B) appears to be the better utilization of the mod-

eling program based on higher confusion matrix 

assessment accuracies, but those high Prob[FS ≤ 1] val-

ues could be overpredictions, as many slope faces have 

Prob[FS ≤ 1] > 0.50. However, the variability of the 

shale bed case, a high-performing model by accuracy 

when using specification B yet the lowest overall when 

using specification A, may just be the byproduct of the 

larger sample size. Overall, the highest false positive 

rate was 12% (models A1, A2, and B2), and the lowest 

was 8 to 9% (models B1 and B3), indicating that the 

models rarely misclassed non-landslides.  

Point landslide observations may not be indicative of all 

possible landslide failure characteristics, thus increas-

ing the false positive rate, as any model’s focus on a  



 

Figure 8. Confusion matrices for the PISA-m results for 

each of the four cases using specification A. Models num-

bered per Table 1. Note true positive (TP), true negatives 

(TN), false positives (FP), and false negatives (FN) labels in 

A1.  

 

Figure 9. Confusion matrices for each of the four PISA-m 

cases using specification B. Models numbered per Table 1. 

Note true positive (TP), true negatives (TN), false positives 

(FP), and false negatives (FN) labels in B1. 

specific landslide failure type may cause overprediction 

regionally. This may have occurred with the rapid re-

connaissance inventory, as the points were mostly close 

to roadways, and model assessments were improved 

when non-landslide points were generated with road-

way proximity in mind. These improvements in the 

model performances may also be due to the other con-

straints, such as forcing non-landslide points off 

hillslopes. While constraining the non-landslide points 

improved the metrics, potential overprediction of 

Prob[FS ≤ 1] on slopes may have been overlooked. The 

buffers applied to points to create initiation zones or 

represent deposits could also lead to uncertainty in 

model performance. However, a conservative size was 

chosen to reduce this effect. Swallom et al. (2025) 

found a 16.7 m buffer appropriate to approximate land-

slide areas with the same extreme rainfall inventory. In 

general, comparison to any available landslide extent 

data should be able to inform the selection of an appro-

priate buffer size for landslide inventory points. Non-

landslide point selection is a particular area of focus in 

contemporary landslide susceptibility modeling (Hu et 

al., 2020; Khabiri et al., 2023; Zhou et al., 2024) be-

cause constrained non-landslide point selection has 

been proven to yield higher performing models. For ex-

ample, Khabiri et al. (2023) used low Prob[FS ≤ 1] re-

sults from PISA-m, with a version of the shale bed case, 

as a control for non-landslide point selection. Zhou et 

al. (2024) deployed a similar approach, instead using a 

logistic regression model output to select the non-land-

slide points. For simplicity, only the GIS-based con-

straints discussed previously were used for this study. 

Even when constrained by slope angle and known land-

slide locations, the assumption persists that randomly 

selected non-landslide points do not intersect a land-

slide. Slope angle thresholding may assist in reducing 

these overlaps, as the hypothetical non-identified land-

slide would be atypical of other slides in the inventory. 

The omission of areas around the digitized landslide 

polygon inventory (Crawford et al., 2021) of location 2 



increased confidence that landslides were not inadvert-

ently included in the non-landslide case. Further, by av-

eraging five sets randomly sampled non-landslide point 

datasets, the influence of spurious points was reduced. 

The rapid reconnaissance inventory lacks confidence in 

landslide locations, and with some of the landslide 

points plotted within the floodplain or on the road 

(likely where the landslide deposit reached), the land-

slide point locations may be inexact. Swallom et al. 

(2025) noted that overall, the rapid reconnaissance in-

ventory points fit into general geomorphic landform 

classes, or geomorphons, (Jasiewicz and Stepiski, 

2013) representing typical hillslope areas, inferring a 

lack of bias of points along roadways. Despite this, the 

t-test indicated that points generated in close proximity 

to roads had statistically distinct Prob[FS ≤ 1] values, 

so only non-landslide points generated near roadways 

were used. These roadway-constrained points increased 

assessment accuracies, primarily by decreasing FP. 

Again, this is likely due to the concentration of points 

in low value Prob[FS ≤ 1] areas. In general, applying 

constraints to the landslide inventories improved the as-

sessments. At worst, when considering a randomly 

sampled non-landslide point set (with the only con-

straint being the omission of known landslide extents), 

the model performance was about 30% lower. Regard-

less, it is unclear how these constrained points may have 

artificially inflated model performance, as potential 

overprediction on high slope angles was not considered.  

While meant to assess model performance, considera-

tion of the inventory point intersections may have 

skewed some of the model interpretations. Ultimately, 

the assessments are a first-order test of over- or under-

prediction for the PISA-m models. If all known land-

slide points were missed (low TP), or conversely, if a 

majority of the determined non-landslide points were 

classed as unstable (low TN), then these PISA-m results 

could be rejected as having limited utility. Metrics that 

focus on the known landslide points (such as success 

rates; Table 8) were similar to accuracy, as were more 

robust metrics such as the nMCC. While an approxima-

tion, the favorable results from the point assessments 

are a good indicator that PISA-m works as a first-order 

investigation into regional landslide susceptibility. 

More thorough assessments using complete inventories 

are recommended, as are more thorough assessments of 

the geotechnical inputs themselves. It is difficult to dis-

cern the completeness of the historic point inventory 

used as a proxy for landsides occurring in background 

climatic conditions. This assumes that the 37 landslides 

that have occurred between 2011 and 2021 in the study 

areas are indicative of natural landslide occurrence 

rates, but there is little evidence to support this assump-

tion. Preliminary work by the authors to generate dif-

ference maps between two series lidar datasets covering 

a similar date range have not yielded useful results due 

to quality level and spatial misalignment. As such, fur-

ther investigation of landslide reoccurrence rates from 

lidar differencing is beyond the scope of this study. In 

lieu of differenced topography, constrained non-land-

slide point selection is ultimately necessary, especially 

with the uncertain distribution and frequency of land-

slide events. While the rapid reconnaissance inventory 

has a large sample size to draw conclusions from, in-

ventories reflecting extreme conditions are not applica-

ble to assessments of model results based on 

background climatic conditions. Instead, PISA-m 

should be used in a way that accounts for extreme sce-

narios. While an effort was made to account for the ex-

treme conditions, using the program configuration 

assessed in this study (an intentionally “off-the-shelf” 

variety), PISA-m is likely not well equipped to model 

this type of event. Further alterations to the pore pres-

sure values and statistical distribution are needed to ap-

proximate extreme events of this magnitude. If using 

PISA-m for extreme event modeling, more specific cal-

ibration to an extreme event inventory would be useful. 

PISA-m, even when approximating different scenarios 

with parameter specifications, is still time independent. 

For instance, using recorded peak pore pressure distri-

butions approaches a temporal model, but the specific 

ranges of geotechnical values needed to precisely 

model a given time period are unlikely to be obtained. 

Matching the time-independent probability results of 

PISA-m to failure rates and vice-versa can be more con-

fusing than clarifying for end users (Haneberg, 2015).  

Visual inspection of the model results shows con-

sistency between the shale bed case and both USCS 



cases across both specifications. Either the distinct 

methods of soil classification yield similar (and ulti-

mately real) landscape-controlled landslide susceptibil-

ity, or the geotechnical values used in each case do not 

differentiate the soil inputs from one another. There are 

several geotechnical value similarities across the mod-

els, and despite the spatial distributions being vastly dif-

ferent between the shale bed case and the USCS cases, 

model results appear very similar. These similarities 

may not be an indication of poor model performance, 

however. Since these maps attempt to represent the 

same in-situ value ranges for soils and other slope char-

acteristics, using similar values across the whole of the 

landscape is likely the more practical approach. If the 

values provided are extreme or an uncharacteristic dis-

tribution is applied, the results could include false pos-

itives. As a result, PISA-m appears less sensitive to the 

spatial extents of the input soils layer and more sensi-

tive to the geotechnical values and probabilities as-

signed. 

The widespread use of uniform distributions also con-

tributes to a lack of confidence in the Prob[FS ≤ 1], but 

the assumption of uniform distributions is necessitated 

by a lack of detailed geotechnical data available (Hane-

berg, 2004). Parker et al. (2016) argued that uniform 

distributions were valid in the southern Appalachians 

for saturated unit weights (γsat), internal friction angles 

(ϕ), and soil cohesions (cs) but that uniform distribu-

tions poorly fit root cohesion (cr) and soil thicknesses 

(D). Sidle and Wu (1999) found that soil cohesion and 

internal friction angles could be assumed to be uni-

formly distributed over their simulations. Root cohe-

sion and morphology are noted as contributing more 

substantially to the factor of safety equation (Simons et 

al., 1978; Hammond et al., 1992). Additionally, as dis-

cussed, the height of the phreatic table (Hw) has a sig-

nificant impact on model results. While uniformity can 

be assumed comfortably for some parameters, robust 

characterization of key parameters such as root cohe-

sion and phreatic table height is advisable. Especially in 

the case of scarce data availability, well-defined ge-

otechnical values and data distributions are essential for 

effective PISA-m utilization. While there were signifi-

cant estimations made to assign geotechnical values, 

the spatial coverages of the soil units and the lidar-de-

rived map-based inputs were more certain. Specifically, 

the use of high-resolution lidar derivatives to generate 

the forest cover spatial input, as well as further pro-

cessing of the lidar-derived DEM, likely added to 

PISA-m’s utility. 

Conclusions 

Eight distinct slope stability models, four cases across 

two parameter specifications, were applied to PISA-m 

and were assessed using two different inventories. The 

focus of this study was to assess the flexibility of inputs, 

the impact of sparse and uncertain geotechnical data, 

and ultimately, the practicality of PISA-m for use in re-

gional landslide susceptibility modeling. By utilizing 

high-resolution lidar inputs when possible and pru-

dently characterizing the geotechnical parameters, gaps 

and uncertainties within available data can be ac-

counted for, and regional landslide susceptibility as-

sessments can be generated efficiently. While this study 

did not assess the full range of possibilities, the easy-to-

implement probability functionality of PISA-m sepa-

rates the program from other physics-based models. 

The flexibility of the model inputs, the translatable fac-

tor of safety output, the limited computing power re-

quired, and the shorter analysis time are all benefits of 

using PISA-m. While this study assessed the sparse data 

use case, proper geotechnical assessments should still 

be conducted, if possible, to reduce significant sources 

of error in the model. Specific attention should be 

placed on deriving comprehensive data distributions 

and value ranges for key parameters such as height of 

phreatic table (Hw), root cohesion (cr) and soil/colluvial 

thickness (D). While specific (extreme) scenario testing 

was performed through parameter specification and 

showed good merits when assessed, off-the-shelf 

PISA-m settings and approximate, time-independent 

geotechnical values should be used with caution. De-

spite these disclaimers, with good understanding of the 

study area and justifiable approximations of the physi-

cal characteristics of the soils, PISA-m can use availa-

ble data to quickly generate regional susceptibility 

maps that serve as first-order assessments.  
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