Mining Geology of the Fire Clay Coal

Stephen F. Greb

Introduction

The Fire Clay (Kann 1985) is one of the leading producers in the Eastern Kentucky coal field. It ranges from early Pennsylvanian to early Tournaisian age and typically ranges from 6 to 12 ft. The coal has low ash and moisture contents as well as high Vdaf (%C) and low S. It is mostly found in the Kentucky coal field (KCC) and it is, therefore, an important coal for the eastern Kentucky area.

Flint Clay Parting (Jackacks)

The Fire Clay coal is contained within a sequence of flint clay and coals. The Fire Clay coal is a member of the Fayetteville Formation. The coal field is divided into two parts: the eastern and western parts. The eastern part is characterized by the presence of the Fire Clay coal, which is a member of the Fayetteville Formation. The western part is characterized by the presence of the Coal Bank coal, which is a member of the Taylorsville Formation.

Multiple-Bench Architecture

The Fire Clay coal is a member of the western part of the coal field. The coal is divided into two parts: the eastern and western parts. The eastern part is characterized by the presence of the Fire Clay coal, which is a member of the Fayetteville Formation. The western part is characterized by the presence of the Coal Bank coal, which is a member of the Taylorsville Formation.

Rotated-Bedding Roof Falls

Large falls along the margins of paleochannels, or large-scale, downslope failures, are often associated with rotated bedding. These falls can form when the bedding is rotated, creating a slickensided surface. The slickensided surface can then be undercut by the coal, creating a fall. This process is often repeated, creating a series of falls.

Sycamore Spring

The Fire Clay coal is a member of the eastern part of the coal field. It is characterized by the presence of the Fire Clay coal, which is a member of the Fayetteville Formation. The coal is divided into two parts: the eastern and western parts. The eastern part is characterized by the presence of the Fire Clay coal, which is a member of the Fayetteville Formation. The western part is characterized by the presence of the Coal Bank coal, which is a member of the Taylorsville Formation.

Acknowledgments

The authors thank several people who provided assistance and support during the course of this research. We would like to thank Dr. E. E. Thacker for his guidance and support throughout the project. We also thank Dr. J. A. Esterle, Dr. G. A. Weisenfluh, and Dr. S. F. Greb for their valuable insights and input. Finally, we would like to thank the Kentucky Geological Survey for their support and assistance.

References


Greb, S. F. (1991), “Roof falls and hazard prediction in eastern Kentucky coal mines, in a mine, only after mining has been commenced near the top of the coal, if the coal is to be used for energy purposes.”

Greb, S. F., and Weisenfluh, G. A. (1996), “Paleoslumps in coal-bearing strata of the Breathitt Group (Fig. 1), which were previously part of the Hyden Formation (Fig. 3). The coal was removed between the two cutouts, where a seal of coal has been formed upon interaction of the cutouts. The coal has a thickness of about 10 to 20 ft. The coal is located in the Pilot Employee Mine, located in the Kentucky coal field.”

Hilliard, A. (1989), “Roof falls and hazard prediction in eastern Kentucky coal mines, in a mine, only after mining has been commenced near the top of the coal, if the coal is to be used for energy purposes.”


Weisenfluh, G. A., and Ferm, A. (1991), “Roof falls and hazard prediction in eastern Kentucky coal mines, in a mine, only after mining has been commenced near the top of the coal, if the coal is to be used for energy purposes.”