There are also a number of wild turkeys (below). Photo by Dan Carey, Kentucky Geological Survey. Hillside construction can cause earth movements if not properly planned. Photos by Paul Howell, U.S. Department of Agriculture, Natural Resources Conservation Service.

If you seek to develop a site on a hill, be aware of the slopes. Slight and moderate limitations are spelled out in the foundation table. However, a slope of 1:2 (vertical to horizontal) or more might call for additional foundation support. On gentle slopes (less than 1:2 incline), any foundation requirements must be determined on a site-to-site basis. Where soil is heavy (clay and silt), it is very difficult to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gentle slopes. At any site, it is important to determine the presence of caverns, cracks, etc. Access roads on gentle slopes should be done by consultation with a geologist. A geologist can recommend the proper location of access roads on gently sloping land.

Hillside construction can cause earth movements if not properly planned. Photos by Paul Howell, U.S. Department of Agriculture, Natural Resources Conservation Service.

Slight to moderate limitations. Low permeable, low bearing caprock. Subject to piping hazard. Refer to soil report for appropriate mapping data. Thanks to Meg Smath, Economic Development Information System, for base-map data. Note: all herein data is subject to change. The River and the Land.

Hillside construction can cause earth movements if not properly planned. Photos by Paul Howell, U.S. Department of Agriculture, Natural Resources Conservation Service.

WESLEY-VILLE
BOSTON
Hillside construction can cause earth movements if not properly planned. Photos by Paul Howell, U.S. Department of Agriculture, Natural Resources Conservation Service.

What Are the Factors That Cause Landslides?

1. Deep seated earth滑动 is the most common type of landslide. These are caused by the movement of large volumes of earth along a slip surface. Debris slides are the result of the sudden movement of large masses of earth and rock down a steep slope. These types of landslides are often caused by heavy rainfall, earthquakes, or human activities such as mining or construction.
2. Surface water is often responsible for the failure of land. The movement of water through the soil can undermine the stability of the slope and cause it to fail. This can be exacerbated by heavy rainfall, which can increase the water table and put additional pressure on the slope.
3. Improper drainage systems can also lead to landslides. Poorly designed or inadequate drainage systems can cause water to accumulate on the surface of the slope, which can lead to failure.

What Are Some Ways to Prevent Landslides?

1. Proper drainage systems are crucial in preventing landslides. This can include the installation of French drains or the rerouting of surface water.According to the U.S. Army Corps of Engineers, the National Engineering Handbook indicates that "properly designed and constructed drainage systems will reduce the risk of landslides." Properly designed drainage systems are essential in preventing landslides. The National Engineering Handbook of the U.S. Army Corps of Engineers provides guidelines on how to design and construct drainage systems to prevent landslides.
2. Trees and vegetation can also play a role in preventing landslides. Trees develop extensive root systems that can help stabilize the soil and prevent erosion. Planting trees and other vegetation can help prevent landslides by providing additional support to the soil.
3. The selection of materials for construction can also affect the likelihood of landslides. The use of construction materials that are not well suited to the site can increase the risk of landslides. Site-specific analyses should be conducted to determine the most appropriate construction materials for the site.

What Are the Factors That Cause Landslides?

1. Deep seated earth滑动 is the most common type of landslide. These are caused by the movement of large volumes of earth along a slip surface. Debris slides are the result of the sudden movement of large masses of earth and rock down a steep slope. These types of landslides are often caused by heavy rainfall, earthquakes, or human activities such as mining or construction.
2. Surface water is often responsible for the failure of land. The movement of water through the soil can undermine the stability of the slope and cause it to fail. This can be exacerbated by heavy rainfall, which can increase the water table and put additional pressure on the slope.
3. Improper drainage systems can also lead to landslides. Poorly designed or inadequate drainage systems can cause water to accumulate on the surface of the slope, which can lead to failure.

What Are Some Ways to Prevent Landslides?

1. Proper drainage systems are crucial in preventing landslides. This can include the installation of French drains or the rerouting of surface water. According to the U.S. Army Corps of Engineers, the National Engineering Handbook indicates that "properly designed and constructed drainage systems will reduce the risk of landslides." Properly designed drainage systems are essential in preventing landslides. The National Engineering Handbook of the U.S. Army Corps of Engineers provides guidelines on how to design and construct drainage systems to prevent landslides.
2. Trees and vegetation can also play a role in preventing landslides. Trees develop extensive root systems that can help stabilize the soil and prevent erosion. Planting trees and other vegetation can help prevent landslides by providing additional support to the soil.
3. The selection of materials for construction can also affect the likelihood of landslides. The use of construction materials that are not well suited to the site can increase the risk of landslides. Site-specific analyses should be conducted to determine the most appropriate construction materials for the site.

XX X


Hillside construction can cause earth movements if not properly planned. Photos by Paul Howell, U.S. Department of Agriculture, Natural Resources Conservation Service.

Hillside construction can cause earth movements if not properly planned. Photos by Paul Howell, U.S. Department of Agriculture, Natural Resources Conservation Service.