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Abstract 19 
 20 
While revolutionary to the geomorphic community, the application of terrestrial cosmogenic nuclide (TCN) 21 
dating is complicated by geological uncertainties, which often lead to skewed or poorly clustered TCN age 22 
distributions. Although a range of statistical approaches are typically used to detect and remove outliers, 23 
few are optimized for analysis of TCN datasets. Many are mean- or median-based and therefore explicitly 24 
assume a single probability distribution (e.g., Mean Squared Weighted Deviates, Chauvenet's Criterion, 25 
etc.).  Given the ubiquity of pre- and post-depositional modification of rock surfaces, which occur at different 26 
rates in different geomorphic settings, these approaches struggle with multimodal distributions which often 27 
characterize TCN datasets. In addition, most statistical approaches do not propagate measurement or 28 
production rate uncertainties, which become increasingly important as dataset size or clustering increases. 29 
Finally, most approaches provide arithmetic single solutions, irrespective of geologic context.  30 
 31 
To address these limitations, we present the Probabilistic Cosmogenic Age Analysis Tool (P-CAAT), a new 32 
approach for outlier detection and landform age analysis. This tool incorporates both sample age and 33 
geologic uncertainties and uses Monte Carlo simulations to eliminate dataset skewness by isolating 34 
component normal distributions from a cumulative probability density estimate for datasets with three or 35 
more samples. This approach allows geologic context to inform post-analysis interpretations, as 36 
researchers can assign landform ages based upon statistically distinct subpopulations, informed by the 37 
characteristics of geomorphic systems (e.g., exhumation of boulders as moraines degrade through time). 38 
To evaluate the effectiveness of P-CAAT, we analyzed a range of synthetic TCN datasets and compared 39 
the results to commonly used statistical approaches for outlier detection. Irrespective of dataset size or 40 
clustering, P-CAAT outperformed other approaches and returned accurate solutions that improve in 41 
precision as sample size increases. To enable more comprehensive utilization of our approach, P-CAAT is 42 
packaged with a GUI interface and is available for download at kgs.uky.edu/anorthite/PCAAT.  43 
 44 
1. Introduction 45 
 46 
Terrestrial cosmogenic nuclide (TCN) dating has enabled quantification of the frequencies, magnitudes, 47 
and timescales of geomorphic processes by permitting direct age analysis of erosional and depositional 48 
landforms (Nishiizumi et al., 1986, 1989; Phillips et al., 1990; Cerling et al., 1994; Molnar et al., 1994; 49 
Burbank et al., 1996). The application of this method is complicated by “geologic uncertainty,” however, in 50 
which pre- or post-depositional modification of rock surfaces results in scattered or poorly clustered TCN 51 
age distributions for individual landforms (Putkonen and Swanson, 2003; Heyman et al., 2011; Dortch et 52 
al., 2010b, c, 2011b; Balco, 2011; Hein et al., 2014). 53 
 54 



Common examples of geologic processes that influence TCN concentrations include erosion of an exposed 55 
surface or post-depositional exhumation of boulders (Gosse and Phillips, 2001), denudation of landforms 56 
such as moraines (Hallet and Putkonen, 1994; Putkonen and O’Neal, 2006; Putkonen et al., 2008; Tomkins 57 
et al., 2021), nuclide inheritance caused by prior exposure (Putkonen and Swanson, 2003), and post-58 
depositional shielding (Dehnert and Schlüchter, 2008) and reworking (D'arcy et al., 2019). Moreover, these 59 
processes operate and vary in significance at the sub-landform scale, as individual boulders can be eroded, 60 
toppled, shielded, and exhumed as landforms degrade through time (Hallet and Putkonen, 1994; Briner et 61 
al., 2005; Ivy-Ochs et al., 2007). Bedrock can also be differentially eroded through abrasion or quarrying 62 
(Hallet, 1996; Briner and Swanson, 1998; Dühnforth et al., 2010; Iverson, 2012; Ugelvig et al., 2018), and 63 
snow can be reworked and redeposited, leading to differential shielding (Schildgen et al., 2005). Although 64 
there are criteria for field identification and exclusion of surfaces compromised by geologic uncertainty 65 
(Gosse et al., 1995; Ivy-Ochs et al., 2007; Dortch et al., 2010a; Akçar et al., 2011; Heyman et al., 2016; 66 
Tomkins et al., 2021), the magnitude and direction of this influence is often difficult to predict based on 67 
observable geomorphic evidence alone (Dortch et al., 2013; Murari et al., 2014). 68 
 69 
Quantitative analysis of exposure-age clustering on an individual landform is typically used to account for 70 
these processes. Standard statistical methods for identifying geologic outliers include iterative reduced chi-71 
squared (Small and Fabel, 2016), mean square weighted deviates (Douglass et al., 2006), probability 72 
density estimates (Dortch et al., 2013; Stϋbner et al., 2021), generalized extreme Studentized deviates 73 
(Jones et al., 2019), Chauvenet's criterion (Rinterknecht et al., 2006), and 1σ or 2σ uncertainty overlap 74 
(Chevalier et al., 2011). Few of these methods are optimized to analyze TCN datasets, however, as such 75 
datasets are characterized by unique sample age and geologic uncertainties. Moreover, rigorous statistical 76 
assessment is often hindered by small sample sizes resulting from the expense of TCN dating, rarely 77 
meeting typical (n = 102 – 103) or even minimum sample sizes (n = 30) following the central limit theorem 78 
(Borradaile, 2003; Balco, 2011; Kwak and Kim, 2017). 79 
 80 
Landform ages based on poorly clustered, skewed, or statistically few (n < 30) TCN exposure ages are 81 
extremely sensitive to the choice of statistical test, which can significantly affect age interpretation 82 
(Applegate et al., 2010, 2012; Chevalier et al., 2005a, b; Brown et al., 2005). This variability can encourage 83 
qualitative outlier identification and removal, without statistical justification (see Balco, 2011, for further 84 
discussion). As a result, a statistically robust standardized approach for TCN age outlier identification is 85 
necessary to enable accordant comparison between studies, reproducibility, and to minimize uncertainty in 86 
landform-age analysis introduced by different outlier identification techniques (Barrows et al., 2007, 2008; 87 
Applegate et al., 2008). 88 
 89 
To this end, we present a new probability-based approach for outlier identification and landform-age 90 
analysis: The Probabilistic Cosmogenic Age Analysis Tool. P-CAAT is a standalone program, coded in 91 
MATLAB, and is freely available for Windows and Mac OS users at kgs.uky.edu/anorthite/PCAAT. The P-92 
CAAT approach improves on previous statistical methods by: 93 
 94 

i. Addressing “sample age” uncertainty by incorporating internal measurement uncertainties in a 95 
numerically generated composite probability density estimate (PDE) and propagating external 96 
measurement uncertainties, the latter of which are typically excluded from commonly utilized 97 
statistical approaches. 98 
 99 

ii. Addressing “geologic” uncertainty by analyzing the clustering of ages on individual landforms by 100 
separating a series of normal distributions (component Gaussians) from the composite PDE to 101 
isolate skew. 102 
 103 

iii. Quantifying uncertainty for component Gaussians, a step that improves upon the previous 104 
skewness-based approach of Applegate et al. (2010, 2012). 105 

 106 
iv. Allowing geologic context to inform landform-age analysis through component Gaussian selection. 107 

Component Gaussians represent statistically distinct subpopulations and can be used to assign 108 
landform ages based upon the characteristics of the studied geomorphic system and likelihood of 109 



pre- or post-depositional modification of sampled surfaces. For example, the youngest TCN 110 
subpopulation (component Gaussian) may be preferred for TCN dating of alluvial fan surfaces 111 
where reworking is dominant (e.g., D’arcy et al., 2019; Saha et al., 2021). 112 

 113 
More broadly, P-CAAT improves upon qualitative-only (subjective) approaches, which lack statistical 114 
justification (Balco, 2011), and quantitative-only approaches, which typically provide arithmetic single 115 
solutions, irrespective of geologic context. To encourage a broader application of our approach, we have 116 
included a description of the P-CAAT program, instructions for use, comparative testing against other 117 
methods, and rigorous testing using synthetic exposure-age datasets.  118 
 119 
 120 
2. Common statistical approaches for outlier identification 121 
 122 
A range of quantitative methods are available to identify geologic outliers in TCN exposure-age datasets. 123 
To evaluate P-CAAT performance, several methods were utilized in the analysis of synthetic-age datasets 124 
(Section 5.1) for comparison. These include: 125 
 126 

● Mean Squared Weighted Deviates (MSWD) and Weighted Mean Squared Weighted Deviates (W-127 
MSWD), which are methods based on an iterative reduced chi-squared approach in which outliers 128 
with the highest deviation are removed sequentially until the statistical indicator approximates a 129 
value of 1. Generally, TCN-based studies that utilize (W)MSWD methods use the (weighted) 130 
standard deviation for uncertainty estimates without calculating asymmetric sigma bounds to 131 
validate the statistical indicator (Kaplan and Miller., 2003; Douglass et al., 2006; Dortch et al., 132 
2010a, b, c, 2011a, b; Heyman et al., 2011). We calculated both asymmetrical sigma bounds above 133 
and below the test statistic value, following the methods of Wendt and Carl (1991) for validation.   134 
 135 

● Generalized Extreme Students Deviates (gESD), which is an iterative test that assumes a normal 136 
distribution and eliminates outliers (the most extreme data points with respect to the mean) to 137 
reduce Rosner’s test statistic (Rosner, 1983). The maximum number of outliers is set at n – 1 138 
(where n is the number of samples). The best results are typically obtained from larger sample 139 
sizes (n ≥ 15). At the same time, the weighted mean and weighted standard deviation of the 140 
remaining ages are typically used to represent the age of the landform (Jones et al., 2019). 141 

 142 
● Chauvenet's Criterion, which calculates a t-value for each exposure age as a function of the 143 

difference between the age and the mean divided by the standard deviation. Outliers are identified 144 
by comparing t-values to a maximum allowable deviation (e.g., at a 95 percent confidence interval) 145 
(Putnam et al., 2013a, b). This process is iterated until all t-values fall within the maximum allowable 146 
deviation (Taylor, 1997; Rinterknecht et al., 2006; Dunai, 2010; Saha et al., 2018, 2019). 147 

 148 
● Two Standard Deviations from the Mean (henceforth referred to as 2-SD), which is calculated by 149 

taking the deviation of all ages in the dataset. Any age that falls outside two-sigma from the mean 150 
is considered an outlier and is removed from the dataset before the final mean and standard 151 
deviation are calculated (Putnam et al., 2013a). A weighted 2-SD approach can also be undertaken 152 
(Blisniuk et al., 2010), although we did not undertake this variation because of intrinsic collinearity 153 
between exposure ages and their uncertainties (i.e., as exposure age increases, uncertainty 154 
increases), a situation that biases landform ages toward younger ages with smaller uncertainties 155 
(Ivy-Ochs et al., 2007). 156 

 157 
● Two Mean Absolute Deviations from the Median (henceforth referred to as 2-MAD), which is similar 158 

to 2-SD but uses the median as the cluster center and the mean absolute deviation (MAD) as the 159 
outlier detection limit. This approach is optimal for skewed datasets because both the median and 160 
the MAD are less sensitive to outlier bias (Leys et al., 2013). In contrast, standard deviation-based 161 
methods are more effective for datasets that initially conform to a normal distribution. After outliers 162 
are removed, the median and MAD of the remaining ages can be used to represent the age of the 163 
landform. Although not used widely in TCN studies (Menounos et al., 2017; Darvill et al., 2018), it 164 



has been demonstrated to be effective in removing outliers in other quantitative studies (Leys et 165 
al., 2013). 166 

 167 
● 2σ Overlap of Age Uncertainty (henceforth referred to as 2σ-overlap), which identifies outliers as 168 

an age that does not overlap with any other age at 2σ uncertainty limits (Davies et al., 2020). The 169 
mean and standard deviation of the remaining ages represent the age of the landform. Although 170 
this method is attractive because of its computational ease, the results are typically conservative, 171 
and its use is limited to identifying extreme outliers. 172 
 173 

• The Press (1997) method (henceforth referred to as Press), as implemented by Muzikar et al. 174 
(2017) and Goehring et al. (2018), utilizes a probability-based (Bayesian) approach to assign 175 
weights to individual data points (exposure ages or concentrations) based on their likelihood of 176 
being correct and returns a weighted mean age and finding sigma form the distribution.  This 177 
approach bypasses the common problem of collinearity between age and uncertainty, which can 178 
unfairly bias the mean towards younger ages. The selection of the standard deviation parameter 179 
(s) is crucial (Muzikar et al., 2017); this is modified until the final probability stabilizes (β). Further, 180 
β should not be too small as this would indicate that broad Gaussians are making a major 181 
contribution to the results (Muzikar et al., 2017), indicating poor handling of overdispersion.  182 
 183 

● Probability Density Estimates (henceforth referred to as PDE), which use a smoothing window 184 
defined by a numeric bandwidth (Silverman, 1986) to generate a composite PDE through the 185 
summation of individual age-uncertainty distributions. The resulting PDE is typically a multimodal 186 
curve in which the highest peak can be interpreted to identify the landform deposition event (Kelly 187 
et al., 2008). PDEs can be calculated before and after outliers are removed using alternative 188 
methods such as MSWD (Douglass et al., 2006) or gESD (Jones et al., 2019) to obtain a density 189 
estimate that conforms to or approaches a normal distribution. There are several limitations to this 190 
approach, however. For example, interpretation of the PDE is typically subjective and not formal, 191 
uncertainties are not estimated directly from the density distribution, numeric bandwidths are 192 
typically not discussed or reported, and the normality of the age estimate is not discussed or 193 
quantified. These limitations have been addressed over the decade long development period of P-194 
CAAT, based on preliminary work by Dortch et al. (2013) and Murari et al. (2014). Recently, Stübner 195 
et al. (2021) developed a Python implementation (henceforth referred to as S-PDE) inspired by 196 
Dortch et al. (2013) PDE approach; this method is included for comparison.  197 

 198 
2.1. Alternative approaches for outlier identification 199 
 200 
In addition to the methods listed above, we did not consider some alternative approaches for outlier 201 
identification. These include: 202 
 203 

● The skewness approach of Applegate et al. (2010, 2012), is a Monte Carlo–based estimator that 204 
assesses exposure-age distributions to determine if the dominant form of scatter is a result of post-205 
depositional modification of rock surfaces (e.g., negative skew caused by degradation or 206 
exhumation) or pre-depositional processes (e.g., positive skew caused by nuclide inheritance). 207 
Although this approach has been shown to be effective at predicting the “true” age of synthetic 208 
datasets, it does not allow for quantification of uncertainty. This precludes the widespread use of 209 
this approach for landform-age analysis. 210 

 211 
● Extreme estimator approaches, such as the oldest-boulder method for degraded landforms 212 

(Putkonen and Swanson, 2003; Briner et al., 2005; Delmas et al., 2008; Allard et al., 2020) and the 213 
youngest-boulder method (Gosse, 2005; Benson et al., 2005) for landscapes characterized by 214 
minimal erosion during glacial cycles (< 3 m) or in which there are long ice‐free periods between 215 
brief glacial maxima (Briner et al., 2016); such scenarios increase the probability of nuclide 216 
inheritance. These methods require the exclusion of obvious outliers (see Benson et al., 2005), but 217 
the qualitative threshold for determining an “obvious” outlier varies between users. Similarly, the 218 
selection of an extreme estimator is linked to the relative probability of pre- or post-depositional 219 
modification in the geomorphic system and identifying the frequency of these processes from 220 



preserved geomorphic evidence alone is a significant challenge. Although extreme estimators may 221 
be appropriate under specific circumstances (Applegate et al., 2010, 2012), we did not consider 222 
these approaches. 223 
 224 

● Researchers routinely used pre-screening based on landform (e.g., moraine sedimentology; Zreda 225 
et al., 1994; Putkonen and O’Neal, 2006; Pallàs et al., 2010; Tomkins et al., 2021) or surface 226 
characteristics (e.g., boulder height – Heyman et al. 2016; boulder weathering – Tylmann et al., 227 
2018) to identify and exclude possible geologic outliers. Although many of the applied criteria are 228 
theoretically sound, few have been tested quantitatively. One exception is the positive correlation 229 
between boulder height and TCN clustering (Heyman et al., 2016), although the overall effect was 230 
minor, as a dominant fraction (> 50 percent) of tall boulder groups were sufficiently scattered to fail 231 
a reduced chi-square test (𝜒𝜒2 ≤ 2). Because pre-screening is applied prior to sample collection and 232 
analysis of the resulting TCN ages, comparison with other statistical approaches was not possible 233 
here. More effective pre-screening of geologic outliers could, however, play an essential role in 234 
simplifying subsequent statistical analysis. 235 

 236 
 237 
2.2. Good practice for calculating landform-age uncertainty  238 
 239 
Irrespective of the choice of statistical approach for outlier identification, there is a clear need to standardize 240 
uncertainty reporting. This is particularly important for regional- or global-scale reanalysis of exposure-age 241 
datasets, as overestimation of uncertainty can result in inappropriate grouping of distinct events, and 242 
underestimation of uncertainty can result in separation of synchronous events or overinterpretation of 243 
seemingly correlative events. 244 
 245 
We distinguish two quantitatively different and independent forms of uncertainty (Fig. 1). They are: 246 
 247 

i. Sample age uncertainty (SAU), which incorporates two distinct forms of uncertainty. These include: 248 
 249 

a. Internal uncertainty, which incorporates errors in sample processing or the ability of an 250 
accelerator mass spectrometer (AMS) to reproduce a standard (Jull et al., 2015). 251 
 252 

b. External uncertainty, which incorporates TCN production rate (Lal, 1991; Stone 2000; 253 
Stroeven et al., 2015; Borchers et al., 2016; Marrero et al., 2016), scaling scheme (Lifton 254 
et al., 2014; 2016) and atmospheric model uncertainty (Uppala et al., 2005).  255 
 256 

ii. Geologic uncertainty (GU), which incorporates a range of pre- and post-depositional processes that 257 
modify rock-surface TCN concentrations, typically expressed by scatter around a “true” landform 258 
age. 259 

 260 
Uncertainty reporting for the methods discussed above, with the exception of PDE approaches, primarily 261 
use deviation from the mean to quantify geologic uncertainty (GU; Fig. 1): 262 
 263 

𝐺𝐺𝐺𝐺 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝑆𝑆 | 𝑀𝑀𝐷𝐷𝑆𝑆𝑆𝑆 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴𝑆𝑆𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝑆𝑆 264 

 265 
Most TCN studies do not propagate sample age uncertainty, however there are exceptions (Martin et al., 266 
2020. SAU can be quantified by calculating the root-mean-square-error (Taylor and Kuyatt, 1994) of 267 
reported internal age uncertainties as follows: 268 
 269 

𝑆𝑆𝐴𝐴𝐺𝐺 =
� 𝑆𝑆𝐴𝐴𝑆𝑆 𝐷𝐷𝑜𝑜 𝑆𝑆ℎ𝐷𝐷 𝐴𝐴𝑠𝑠𝐴𝐴𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆 𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝐴𝐴
𝑁𝑁𝐴𝐴𝑆𝑆𝐴𝐴𝐷𝐷𝑆𝑆 𝐷𝐷𝑜𝑜 𝐷𝐷𝐴𝐴𝐴𝐴𝐷𝐷𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝑆𝑆𝐴𝐴

 270 

 271 
Total landform-age uncertainty (t) can be calculated through summation in quadrature as follows: 272 



 273 
𝑆𝑆 =  �𝑆𝑆𝐴𝐴𝐺𝐺2  +  𝐺𝐺𝐺𝐺2 274 

 275 

 276 
 277 
Fig. 1. Schematic diagram to illustrate the difference between geologic (GU) and sample age uncertainties 278 
(SAU). GU is typically expressed by scatter around a “true” landform age (e.g., distribution around the 279 
mean), although the magnitude and direction of this influence is often difficult to predict based on 280 
geomorphic evidence alone. In contrast, the magnitude of SAU is typically characterized as normal and 281 
consistent at the landform scale. Illustrated here is a worst-case scenario in which all ages have been 282 
shifted older (blue → green), for example due to a change in calculated TCN production rate (Borchers et 283 
al., 2016) or a systematic difference between instrument results (Small and Fabel, 2016; Putnam et al., 284 
2019). 285 
 286 
Typically, SAU is significantly smaller than GU, but SAU becomes increasingly important as clustering 287 
improves or sample size increases. The quadratic approach presented here would be suitable for 288 
propagating SAU into the results given from (W)MSWD, gESD, Chauvenet's Criterion, 2-SD, 2-MAD, 2σ-289 
overlap, and P-CAAT when internal uncertainties are used to calculate the cumulative PDE. To our 290 
knowledge, a PDE based on external uncertainties is the only approach that inherently accounts for both 291 
the distribution of TCN ages (GU) and sample age uncertainty (SAU) simultaneously. If SAU is not 292 
propagated, it is possible to calculate a total landform-age uncertainty (t) that is lower than AMS precision 293 
for very tightly clustered datasets (see Jull et al., 2015). 294 
 295 
When analyzing data from a single landform or site, outlier identification should be based on internal 296 
uncertainties only, regardless of the statistical method chosen. After statistical analysis and outlier removal 297 
(Balco et al., 2008; see Section 3.3), external uncertainties should be propagated to compare landforms in 298 
distinct regions and latitudes (Clark et al., 2009) and to integrate results with other geochronological 299 
methods (e.g., luminescence or 14C dating). In contrast, external uncertainties should be used for outlier 300 
identification only for ages on a single landform that were measured using different instruments (Small and 301 
Fabel, 2016; Putnam et al., 2019) or nuclides (e.g., 10Be and 36Cl; Wilson et al., 2013). 302 
 303 
3. P-CAAT tool description 304 
 305 
Our Probabilistic Cosmogenic Age Analysis Tool is a new statistical approach for outlier detection and 306 
landform-age analysis. P-CAAT generates a composite PDE based upon individual age-uncertainty 307 
distributions and then undertakes a series of modelling steps to isolate component normal (Gaussian) 308 
distributions. P-CAAT differentiates itself from previous PDE approaches by incorporating robust bandwidth 309 
estimators (see Section 3.1), breaking down density estimates into true Gaussian components and 310 
analyzing them quantitatively to estimate uncertainty. This approach is attractive because many processes 311 
in nature follow a normal distribution, and numerous observations of a process generally follow the central 312 
limit theorem (Kwak and Kim, 2017). In turn, if a viable sample size is achieved, components that are 313 
younger (e.g., from erosion, exhumation, or shielding) or older (e.g., from inheritance) than the “true” age 314 
of the landform (Heyman et al., 2011) can be isolated. Most importantly, P-CAAT enables Gaussian choice 315 
based on evidence provided by geologic context, which can provide more consistent results than arithmetic 316 
single-solution approaches (e.g., MSWD, gESD, etc.). P-CAAT is distinct from the typical approach of 317 



qualitative identification and removal of outliers (see Balco, 2011), as component Gaussians represent 318 
statistically distinct, normally distributed (single event) subpopulations. 319 
 320 
P-CAAT was developed in the MATLAB environment and uses a weighted ksdensity kernel smoothing 321 
function in MATLAB to generate a PDE based on input exposure ages, their clustering, and their 322 
uncertainties. Weights (w) are based on inverse age precision: 323 
 324 

𝑤𝑤 = �
𝐷𝐷𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴 𝐴𝐴𝑆𝑆𝑢𝑢𝐷𝐷𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆𝑢𝑢

𝐷𝐷𝑒𝑒𝑒𝑒𝐷𝐷𝐴𝐴𝐴𝐴𝑆𝑆𝐷𝐷 𝑆𝑆𝑎𝑎𝐷𝐷
�
−1

 325 

 326 
which eliminates collinearity issues, as noted by Ivy-Ochs et al. (2007), while incorporating sample age 327 
measurement uncertainties into PDE generation. 328 
 329 
3.1. Bandwidth estimation 330 
 331 
Bandwidth estimation for PDE generation is critical; a bandwidth that is too wide will over-smooth the PDE 332 
and one that is too narrow will over-fit peaks to the noise in the data (Fig. 2). A numeric bandwidth is typically 333 
calculated using a bandwidth estimator, which returns distinct PDEs as a function of the size and clustering 334 
of the input data. Widely used examples can be found in Silverman (1986), Sheather and Jones (1991), 335 
and Scott (2015). 336 
 337 

 338 
Fig. 2. An example of how bandwidth estimator choice affects probability density estimates assuming ages 339 
are from a single landform. (A) Probability density estimates using the mean (black line), STD/IQR (green 340 
line), and MADD (mean absolute Dortch deviants; red line) bandwidth estimators with numerical solutions 341 
in parentheses (see below for detailed descriptions). (B) The distribution of exposure ages (ka ± internal 342 
uncertainty; n = 50; sorted in rank order; Dortch et al., 2013). The dataset mean and standard deviation is 343 
13.7 ± 1.3 ka, with a range of 6.9 ka and an interquartile range of 1.2 ka. The large number of samples and 344 
high degree of uncertainty overlap causes the Mean bandwidth estimator to over-smooth the data into a 345 
single peak. In contrast, the MADD (mean absolute Dortch deviants) bandwidth estimator under-smooths 346 
the data due to the very tight clustering 12.5-14.5 ka, leading to an overly complex multimodal PDE. The 347 
STD/IQR estimator separates the main body of data centered on ~14 ka into two peaks, fitting with prior 348 
knowledge of how glacial moraines degrade through time (Dortch et al., 2013). 349 
 350 
There is no single agreed-upon theorem or method for bandwidth estimation, however. Moreover, because 351 
the performance of an individual bandwidth estimator is intimately linked to the input data, the actual 352 
numeric bandwidth used can be highly variable. Variability in age clustering and skewness, in combination 353 
with individual age uncertainties, make automatically determining a best-fit bandwidth under changing 354 



scenarios difficult. Additionally, the choice of bandwidth estimator is critical, because some datasets cannot 355 
be solved with all estimators (i.e., the model fails to converge on a solution). 356 
 357 
To address these issues, three bandwidth estimators were selected and incorporated into P-CAAT. They 358 
are: 359 
 360 
Option 1 Mean: uses the arithmetic mean of the internal age uncertainties (iu) as the numeric bandwidth 361 

(bw) as follows: 362 
 363 

𝐴𝐴𝑤𝑤 =  𝐷𝐷𝐴𝐴    364 
 365 

This approach typically returns more accurate solutions than Options 2 and 3 on smaller 366 
sample sizes (n = 5 – 6). The narrow numeric bandwidth can prevent model convergence on 367 
poorly clustered or small datasets, however. 368 

 369 
Option 2 STD/IQR: follows Silverman’s (1986) rule of thumb as follows: 370 
 371 

𝐴𝐴𝑤𝑤 =  0.9𝑆𝑆−
1
5 ⋅ 𝑆𝑆𝐷𝐷𝑆𝑆 �𝐴𝐴𝑆𝑆(𝑒𝑒), 𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥)

1.34
�  372 

 373 
where sd (standard deviation) and IQR (interquartile range) represent the clustering of the 374 
input data (x), which is multiplied by scaled dataset size (n). Selection between standard 375 
deviation and interquartile range methods is automatic; the former typically returns the smaller 376 
bandwidth for poorly clustered or smaller datasets (n ≤ 10). The interquartile range method 377 
generally produces the lower estimate for both tightly clustered and larger datasets (n ≥ 10). 378 

 379 
Option 3 MADD: mean absolute Dortch deviants uses a variation of Silverman’s (1986) rule of thumb 380 

as follows: 381 
 382 

𝐴𝐴𝑤𝑤 =  0.9𝑆𝑆−
1
5 ⋅ �𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥)

2
�  383 

 384 
where MAD is the mean absolute deviation of the input ages (x), which is multiplied by scaled 385 
dataset size (n). This estimator returns more consistent numeric bandwidths with variable 386 
sample sizes compared to Option 2 and provides a higher correct solution rate than Options 1 387 
and 2 for larger sample sizes (n ≥ 8). 388 
 389 
 390 

3.2. Natural logarithm mode 391 
 392 
Although the three estimators provide a range of numeric bandwidths that work effectively across the full 393 
range of data size-clustering scenarios, all statistical methods assessed in this study struggle to distinguish 394 
landforms with large age differences within a single dataset (e.g., Holocene vs. MIS 6; see Fig. 3). This is 395 
particularly important for regional- or global-scale analyses (Clark et al., 2009; Dortch et al., 2013; Murari 396 
et al., 2014), which analyze exposure-age distributions on individual landforms before compiling regional 397 
landform ages to define glacial stages (Saha et al., 2018). For P-CAAT specifically, bandwidth estimators 398 
operating in linear age space can simultaneously over-smooth younger landform ages and under-smooth 399 
older landform ages (Fig. 3A). 400 
 401 
To account for this, P-CAAT incorporates a natural logarithm (LN) mode (“LN Data” button), which 402 
transforms landform ages and relative uncertainties into LN space (Fig. 3C) and enables bandwidth 403 
estimators to isolate component Gaussians across a wider range of ages. While the LN mode typically 404 
results in larger uncertainties, this functionality is particularly useful for analysis of very old landforms and 405 
regional compilations.  Ages should be parsed into datasets roughly characterized by magnitude-of-order 406 
age ranges (e.g., 100 ka–1 Ma) while following natural breaks in age clustering. Middle age ranges (e.g., 407 
10 – 100 ka) can be assessed in either linear or LN age space. Young datasets (e.g., 0–1 ka, 1–10 ka) are 408 



best analyzed in a linear age space because of small absolute uncertainties and the possibility of negative 409 
LN returns, which complicates Gaussian behavior. 410 
 411 
 412 

 413 
Fig. 3. Compilation of 115 Himalayan moraine landform ages (Owen and Dortch, 2014) analyzed in P-414 
CAAT using linear (A–B) and natural logarithm modes (C–D). In (A), the red component Gaussian is 415 
centered on 17.1 ± 8.6 ka, whereas (C) distinguishes two events at 14.1 ± 2.8 ka (red) and 22.3 ± 4.4 ka 416 
(turquoise). Moreover, LN scale produces more intelligible plotting: higher relative probability and visually 417 
narrower sigma for older component Gaussians despite numeric similarity (e.g., yellow component 418 
Gaussians are (A) 182.7 ± 21.0 ka and (C) 186.1 ± 24.8 ka or 5.23 ± 0.13 LN (ka)).   419 
 420 
3.3. Model iterations and precision limits 421 
 422 
P-CAAT uses MATLAB’s nonlinear least-squares regression function (nlinfit) and a Monte Carlo–style 423 
approach (based on a combination of peak probability, residuals, quantile estimates, and parameter test) 424 
to perturbate Gaussian starting points for model runs until it converges on a single solution. The dynamic 425 
nature of this process makes it impossible to estimate the number of cycles undertaken before completion, 426 
but this typically ranges from 1–20 and under challenging cases, > 200. In each cycle, component 427 
Gaussians are deconvolved from the cumulative PDE using chi-squared minimization based on the 428 



Levenberg Marquadt algorithm and nonlinear curve fitting with a maximum of 1,000 iterations (Levenberg, 429 
1944; Marquardt, 1963; Moré and Sorensen, 1983). 430 
 431 
As component Gaussians are added, the starting points of all other component Gaussians are affected; 432 
final positions move according to optimization iterations. The sequential addition of component Gaussian(s) 433 
occurs in each cycle until the model converges with the fewest components possible. The optimal 434 
correlation threshold for convergence is set at 3σ (R2 ≥ 0.997) and is defined based upon a linear regression 435 
derived from the model and data PDE. Results that reach 2σ are also considered valid (R2 ≥ 0.95) but lower 436 
correlation values are not (R2 < 0.95). Although the Kolmogorov-Smirnov test is a standard method for 437 
comparing probability distributions, we found that this approach does not provide a strict enough correlation 438 
threshold to ensure convergence on a global solution because of lower test sensitivity to variance between 439 
the tails of the compared distributions. By comparison, our approach limits variance between the Gaussian 440 
mean and sigma estimates to ~1 × 10–15 order of magnitude. 441 
 442 
Following model convergence, isolated component Gaussians can be assessed based on geologic context, 443 
and the appropriate component can be selected to represent the age of the landform (± 1𝜎𝜎). This is critical 444 
because the geologic context of statistically valid populations should take precedence over pure probability. 445 
While P-CAAT does not incorporate a-priori information, like a Bayesian approach (c.f., Martin et al., 2020 446 
and references therein), researchers should consider alternative information when choosing a preferred 447 
component Gaussian. Common examples may include morphostratigraphic order, stratigraphic limitations 448 
provided by 14C ages, evidence of erosion or landform instability, and landform type (e.g., alluvial fans 449 
commonly rework debris leading to significant prior exposure). In contrast, common statistical approaches 450 
for outlier identification (see Section 2) converge on a single solution based on internal biases without 451 
geologic context. This situation leads researchers to search for a statistical test that fits the context of the 452 
studied landform. In turn, we argue that P-CAAT addresses these limitations by allowing for choice of 453 
bandwidth estimator and component Gaussian based on geologic context, allowing P-CAAT to be highly 454 
versatile and applicable, regardless of dataset size or clustering or landform propensity for inheritance (e.g., 455 
alluvial fans) or degradation (e.g., moraines). 456 
 457 
Although the 1𝜎𝜎 bounds of the isolated component Gaussian incorporates both internal and geologic 458 
uncertainties (see Section 2.2), external uncertainties are necessary for comparison with landforms in 459 
different regions, or which have been analyzed using alternative instruments, nuclides, or geochronological 460 
techniques (Balco et al., 2008). External uncertainties are inherently accounted for when the cumulative 461 
PDE is based on external uncertainties.  However, for individual landforms, it is best to use internal 462 
uncertainties, which requires external uncertainties to be added after PDE analysis. To address this, 463 
external uncertainties are propagated into total landform-age uncertainty (t) as follows: 464 
 465 

𝑆𝑆 = 𝜎𝜎 + 𝑃𝑃 ∗ 𝑆𝑆𝐷𝐷𝑆𝑆𝑆𝑆(
𝐸𝐸 − 𝐼𝐼
𝐴𝐴

) 466 

 467 
where 𝜎𝜎 is the 1σ sigma bounds (~ 68 percent) of the component Gaussian, P is the component Gaussian 468 
peak (exposure age), and E, I, and A represent the external and internal uncertainties and exposure ages 469 
of the TCN data enclosed by the component Gaussian, respectively. 470 
 471 
4. Using P-CAAT 472 
 473 
To calculate landform ages using P-CAAT, exposure-age data are imported in comma-separated (.csv) or 474 
tab-delimited format (.txt). These data should be based on appropriate production rates, scaling schemes, 475 
and calculation methods (Balco et al., 2008; Marrero et al., 2016; Martin et al., 2017; Fenton et al., 2019; 476 
Jones et al., 2019). In turn, it is worth noting that recalibration or refinement of TCN data will necessitate 477 
reanalysis using P-CAAT, because of the dynamic nature of the Monte Carlo approach and the fact that 478 
these refinements may affect individual exposure ages to varying degrees (e.g., the magnitude of change 479 
increases with absolute age for exposure ages recalculated with a new production rate). Input data include: 480 
 481 



i. A distinct landform name to allow P-CAAT to distinguish between separate landforms and to enable 482 
users to compile data from multiple landforms in a single file. 483 

ii. The exposure age of each sample (in ka). 484 
iii. The internal (analytical) uncertainty (in ka) for analysis and outlier identification. 485 
iv. The external uncertainty, which incorporates production rate, scaling, and atmospheric model 486 

uncertainties, in ka for analysis and outlier identification or simple error propagation. 487 
 488 
Formatted example datasets from Barnard et al. (2004), Seong et al. (2007), Schaefer et al. (2008), Hedrick 489 
et al. (2011) and Pratt-Sitaula (2011) are included in the download package for test runs and exploration of 490 
P-CAAT outputs (see “Instillation and functions of P-CAAT tutorial).   491 
 492 
4.1. P-CAAT outputs 493 
 494 
Following model convergence, P-CAAT generates four plots and two data tables. Three of these plots are 495 
used to provide insight into the fitting process and the distribution of the exposure ages (see Section 4.1.1). 496 
The fourth plot and data tables provide information on the model fit and the age and sigma of isolated 497 
component Gaussians (see Section 4.1.2). To illustrate this functionality, we used exposure-age datasets 498 
from Seong et al. (2007), Applegate et al. (2010), Hendrick et al. (2011), and Owen and Dortch (2014); 499 
corresponding outputs are shown in Figs. 4–7. 500 
 501 
4.1.1. Insight plots 502 
 503 
The first insight plot is a quantile-quantile (QQ) plot (PDE vs. Model Fit), which is a standard approach for 504 
identifying patterns in correlations (Fig. 4). The R2 value represents the overall degree of explained variance 505 
between the PDE, derived from the exposure-age data, and the model, derived from the summed 506 
component Gaussians, but the QQ plot provides greater insight into model accuracy with respect to the 507 
distribution of the underlying exposure ages. A good model fit will show minimal deviation from the one-to-508 
one line (Fig. 4A), but a poor model fit may show significant nonlinear divergence (Fig. 4B) or dispersion 509 
(Fig. 4C), indicating that part of the data PDE is not accounted for by the model. Deviation in the mid- to 510 
high-probability range is particularly important, as this often indicates a mismatch between the PDE and 511 
model (e.g., a primary distribution is not accounted for). By comparison, deviation near zero is typically less 512 
important, as this indicates part of the extreme ends of the tails have been missed. 513 
 514 



 515 
Fig. 4. Quantile-quantile plot between the data PDE and the model, evaluated at 100 evenly spaced 516 
intervals within the age range of the data, using exposure ages from (A) Applegate et al. (2010), (B) 517 
Hendrick et al. (2011), and (C) Seong et al. (2007). Black line represents 1:1 plot for reference. 518 



 519 
The second insight plot is a P-CAAT Diagnostic Plot (Fig. 5), which shows the data PDE alongside the 520 
results of successive model-cycle PDEs and associated residuals. The number of displayed model cycles 521 
reflects the computational ease of the calculation, with more model cycles required for complicated 522 
datasets. In Figure 5A, the correlation threshold is reached in just two cycles (Applegate et al., 2010), which 523 
reflects the size of the dataset (n = 15) and the absence of positive skew (i.e., pre-depositional exposure). 524 
By comparison, analysis of landform ages from Owen and Dortch (2014) required six cycles before model 525 
convergence (Fig. 5B), which reflects the size and complexity of the underlying dataset and the use of 526 
natural logarithm (LN Data) mode (see Section 3.2).   527 
 528 

 529 
Fig. 5. Relative probability plots showing successive P-CAAT model runs. The model continues until a 3σ 530 
correlation threshold is reached (R2 ≥ 0.997) or all possible perturbations have been tested. The red line 531 
(brown for those with Protanopia and Deuteranopia color-blindness) represents the data PDE and dashed 532 
black lines represent the end model of successive P-CAAT cycles; each cycle represents up to 1,000 533 
iterations. The dashed pink lines (blue for colorblind readers) represent residuals between each model fit 534 
and the data PDE. 535 
 536 
The third insight plot provides an overview of the input data in various formats and is designed to aid the 537 
user in choosing a component Gaussian that reflects the distribution of the exposure age data and the 538 
geologic context (Fig. 6). Typical choices may include the youngest, highest-probability, or oldest-539 
component Gaussian, but this should be justified based on the characteristics of the geomorphic system, 540 
the likelihood of pre- or post-depositional modification of rock surfaces, and the number of exposure ages 541 
enclosed by the selected Gaussian (see Section 5.3). 542 



 543 

 544 
Fig. 6. Third insight plot showing the distribution of exposure-age data (Applegate et al., 2010) and P-CAAT 545 
model outputs. Results are only displayed if correlation is ≥ 2σ.  (A) Histogram of exposure ages calculated 546 
using MATLAB’s automatic binning algorithm, and the corresponding data PDE. (B) Individual exposure 547 
age relative probabilities calculated using internal measurement uncertainties. (C) Data PDE (red line; 548 
brown for color-blind), final model PDE (black dashed line), and corresponding residuals (pink dotted line). 549 
The minor deviation between the data and model PDE at ~14 ka (relative probability = ~0.05) accounts for 550 
the imperfect R2 correlation value of 0.998 and minor dispersion highlighted in Figure-4A. (D) Model PDE 551 
(black line) and component Gaussian distributions (other colored lines). (E) Exposure ages in rank order (± 552 
internal uncertainties). We identified the oldest component Gaussian (far right - Gaussian 8, dashed 553 
turquoise line; light blue for color-blind readers) as correct, with ages completely enclosed at 2σ (internal 554 
uncertainty), highlighted in turquoise for reference. 555 



 556 
4.1.2. Output tables and plots 557 
 558 
To allow future researchers to evaluate the distribution of the input data and the suitability of the analytical 559 
choices (i.e., bandwidth estimator and component Gaussian), it is critical that users report all necessary 560 
information. To facilitate this, P-CAAT generates two data tables that provide information on: 561 

i. The model fit (R2, p value, bandwidth method, numeric bandwidth). 562 
ii. The characteristics of each component Gaussian, including probability height, the corresponding 563 

exposure age (ka), internal and external uncertainties, and the number of ages enclosed by 564 
component Gaussians at 2σ. 565 

Although reporting the entirety of these data is not necessary, some core elements must be reported for 566 
reproducibility. These are: 567 
 568 

i. The P-CAAT version number. 569 
ii. The age and internal and external uncertainties of the selected component Gaussian. 570 
iii. The bandwidth estimator used, along with the model fit, p value, and numeric bandwidth. 571 
iv. A clear rationale for the choice of component Gaussian. 572 

 573 
Using information from Figure 6 and the associated data tables, the user can select which component 574 
Gaussian best approximates the age of the landform. Entering the associated Gaussian number will 575 
produce a Publication Plot (Fig. 7), highlighting the selected Gaussian (in either red or black) and its 576 
component ages and visualizes the propagated external uncertainty (see Section 3.3). For regional 577 
datasets, enter an uppercase ‘R’ to highlight all component Gaussians.  578 
 579 

 580 
Fig. 7. A Publication Plot generated using P-CAAT’s red option based on data from Applegate et al. (2010). 581 
The upper subplot is a simplified publication-ready version of the P-CAAT model results (see Fig. 6), which 582 
includes the data PDE (thick gray line), the model PDE (black dashed line), model residuals (gray dotted 583 
line), and the individual component Gaussians (thin gray lines). Solid and dashed red lines represent 584 
internal and external uncertainties for the selected component Gaussian, respectively (see Section 3.2). 585 
The lower subplot shows TCN exposure ages in rank order (± internal uncertainties), with ages completely 586 



enclosed by the selected component Gaussian at 2σ highlighted in red (brown for color-blind readers). 587 
There are no external uncertainties for the Applegate et al. (2010) test data, thus they were set at 125 588 
percent of internal uncertainties for illustration purposes. 589 
 590 
5. Testing P-CAAT 591 
 592 
Early versions of P-CAAT were extensively modified and tested during reanalysis of >1,500 TCN ages from 593 
across the Himalayan-Tibetan Orogen (Dortch et al., 2013; Murari et al., 2014). Although this process 594 
provided a consistent tool for regional-scale landform-age analysis, the absence of independent age 595 
controls for the vast majority of sites (e.g., minimum or maximum 14C ages; Briner et al., 2005) precluded 596 
the possibility of rigorously assessing the accuracy of this approach with respect to a known or “true” age. 597 
 598 
To address this limitation, we assessed P-CAAT performance through analysis of synthetic datasets with 599 
an assigned “true” age. First, we used the synthetic datasets of Applegate et al. (2012) to compare P-CAAT 600 
performance against common statistical approaches for outlier identification and assessed model accuracy 601 
for datasets compromised by either pre-depositional or post-depositional skew (see Section 5.1). Second, 602 
we constructed new synthetic datasets to evaluate bandwidth performance and the effects of component 603 
Gaussian selection for datasets influenced by both pre- and post-depositional skew (see Section 5.2). 604 
Synthetic dataset testing is extensive and far exceeds the number of sites with independent age controls. 605 
 606 
5.1. Synthetic datasets with unidirectional skew 607 
 608 
Applegate et al. (2012) took great care in developing skewed synthetic-age datasets based on models of 609 
moraine degradation or inheritance (Applegate et al., 2010). These synthetic datasets represent end-610 
member scenarios with unidirectional skew, reflecting the influence of either pre-depositional or post-611 
depositional processes. Representative samples were obtained from the complete datasets based on 612 
quantile sampling to ensure consistency with the parent distribution (P. Applegate, pers. comm., 2012) and 613 
to produce new datasets with sizes that encompass a realistic range of typical TCN sampling approaches 614 
(n = 5–25). They assumed that the negative skew on degraded datasets (D#) represents exhumation of 615 
boulders as moraines degrade through time (Putkonen et al., 2008), and positive skew on inherited datasets 616 
(I#) represents prior exposure (Putkonen and Swanson, 2003), where “#” represents the number of ages 617 
within each dataset. 618 
 619 
All 10 datasets (D5–D25; I5–I25) were processed in P-CAAT; combined results are shown in Figure 8. For 620 
each dataset, results are based on the narrowest numeric bandwidth that P-CAAT could solve for and that 621 
exceeded the 3σ correlation threshold (R2 ≥ 0.997; see Supplementary Table S1). For comparison, each 622 
dataset was also evaluated using MSWD, W-MSWD, Chauvenet's criterion, gESD, 2-SD, 2-MAD, 2σ-623 
overlap, Press and S-PDE methods (see Section 2), the results of which are shown in Figure 9 and Table 624 
1. 625 
 626 
We applied a three-sample minimum for all statistical methods to ensure an age cluster is adequate to 627 
quantify statistical performance. This threshold is based upon the probability of nuclide inheritance and the 628 
morphology of sampled rock surfaces (see Appendix 1 for further information). In turn, methods that 629 
converge on a solution with less than three ages remaining in the calculation pool, or in which the selected 630 
component Gaussian encloses less than three ages at 2σ, were considered failed runs. Instances in which 631 
methods could not identify an outlier, identified the entire dataset as outliers, or failed to meet their internal 632 
test statistic threshold were also considered failed runs. 633 
 634 
P-CAAT was able to isolate a component Gaussian that overlapped with the “true” age (20 ka) within 1𝜎𝜎 635 
(internal uncertainty) for all datasets (Fig. 8). The selection of end-member Gaussian components for both 636 
assumed degraded (oldest component) and inherited datasets (youngest component) is justified based on 637 
the observable underlying skewness of the data. Although 1𝜎𝜎 uncertainties of the selected Gaussians are 638 
large with small sample sizes (n = 5), uncertainties are reduced rapidly in the degraded datasets as sample 639 
size (n = 10) and the degree of overlap between exposure ages increases. A similar pattern holds true for 640 
the inherited datasets, but the reduction in component Gaussian uncertainty is delayed to larger sample 641 



sizes (n ≥ 10), which reflects the minimal overlap of uncertainties for young synthetic ages. Overall, as 642 
sample size increases, P-CAAT returns more accurate and precise solutions. 643 
 644 

 645 

 646 
Fig. 8. P-CAAT model results for degraded (D#) and inherited datasets (I#), constructed based on quantile 647 
sampling of synthetic datasets developed by Applegate et al. (2012). Upper subplots are simplified 648 



publication-ready versions of the P-CAAT model results. They include the model PDE (thick black line), 649 
individual component Gaussians (thin gray lines), and the chosen component Gaussian (thick red line; 650 
brown for color-blind readers). The lower subplots show TCN exposure ages in rank order (± internal 651 
uncertainties); ages enclosed by the selected component Gaussian at 2σ are highlighted in red. True age 652 
is 20 ka. 653 
 654 
By comparison, the standard approaches for outlier identification in the cosmogenic community 655 
demonstrate inconsistency across the skewed datasets, with numerous failures (Fig. 9). This includes 656 
MSWD, W-MSWD, Chauvenet's criterion, and 2-SD (n = 4–6), with gESD consistently failing to meet its 657 
internal statistical “k” indicator threshold for valid results. Performance varied across the degraded and 658 
inherited datasets (Table 1); W-MSWD performed moderately well on negatively skewed (degraded) 659 
datasets, but poorly on positively skewed datasets (inherited), and the reverse was true for Chauvenet's 660 
criterion and 2-SD. The 2σ-overlap method is more consistent than other standard approaches, with only a 661 
single failure (I5; Fig. 9), but solutions trend away from the “true” age and uncertainties increase with larger 662 
sample sizes for both degraded and inherited datasets (Table 1), a result of less stringent exclusion criteria. 663 
For datasets devoid of geologic uncertainty, mean-based outlier detection could prove effective. These 664 
methods struggle to identify outliers when geologic uncertainty is present, however, because they explicitly 665 
assume a single probability distribution. 666 

 667 
 668 
Fig. 9. Comparison plot testing the nine methods against skewed datasets from Applegate et al. (2012).  669 
Turquoise (light blue for color-blind readers) horizontal bar represents true age (20 ka). Note that P-CAAT 670 
is consistently closer to the “true age” (more accurate), with smaller average uncertainties (more precise) 671 
than other methods. × = failed test and circles = successful test. All vertical uncertainty bars are 1σ. 672 
Quadratically propagated internal uncertainty is visible as vertical black extension lines for (W)MSWD 673 
results on degraded datasets. P-CAAT is represented by the left most points in each subplot. 674 

 675 



Of the remaining methods, 2-MAD, (Muzikar et al., 2017), and S-PDE (Stübner et al., 2021) successfully 676 
converge on solutions with no failures and provide consistent ages for both degraded and inherited 677 
datasets. The superior performance of 2-MAD, with respect to common statistical approaches (e.g., 2-SD), 678 
is consistent with previous research (Leys et al., 2013).  If researchers insist on using traditional non-PDE 679 
approaches, we recommend adopting 2-MAD as a new standard over typical mean/std reporting in the 680 
cosmogenic community. P-CAAT consistently outperforms these methods, however, with a smaller average 681 
deviation from the true age for both degraded (P-CAAT = 0.4 ka; S-PDE = 0.7 ka; Press = 0.8 ka; 2-MAD 682 
= 2.0 ka) and inherited datasets (P-CAAT = 3.7 ka; S-PDE = 7.7 ka; Press = 8.3 ka; 2-MAD = 10.5 ka) and 683 
with markedly reduced uncertainties (see Table 1). 684 
 685 
Differences between the results of P-CAAT and S-PDE (Stübner et al., 2021) largely reflect the performance 686 
of the chosen bandwidth estimator and collinearity between age and uncertainty. These approaches also 687 
differ in other subtle but important features, including the propagation of external uncertainties, error 688 
normalization, and the viability threshold for component Gaussian selection (three enclosed ages vs. ≥ 5 689 
percent relative probability). The Press approach appears to model the highest probability Gaussian, which 690 
leads it to overestimate the age of inherited datasets. Overall, P-CAAT outperforms both S-PDE and Press, 691 
most notably for inherited datasets (see Fig. 9), but all three techniques represent substantial improvements 692 
upon mean- or median-based approaches and are particularly effective at eliminating the negative skew 693 
associated with degrading landforms. 694 
 695 
  696 



Table 1. Results of analysis of degraded and inherited datasets that represent a 20 ka old landform from 697 
Applegate et al. (2012), reporting the landform age ± internal uncertainty (1σ) for each method (n = 10) and 698 
each sample size (n = 5–25). Columns are ordered by the number of failed runs (italic red text), which 699 
occurred where methods identified the entire dataset as outliers (a), could not identify an outlier (b), or failed 700 
to meet their internal test statistic threshold (c). (see Section 2 for definitions of statistical names and details 701 
of calculations). 702 

Dataset Sample 
size 

Statistical method (ka) 

P-CAAT S-PDE Press 2-MAD 2σ-overlap W-MSWD 2-SD MSWD Chauvenet’s gESD 

Degraded 

5 18.5 ± 3.3 18.7 ± 4.9 18.7 ± 2.4 18.1 ± 2.1 18.8 ± 1.5 18.6 ± 1.2 c 15.8 ± 4.5 b 18.8 ± 1.5 c 15.8 ± 4.5 b 16.8 ± 3.5 b, c 

10 19.8 ± 0.5 19.4 ± 2.9 19.3 ± 0.4 17.8 ± 2.8 18.2 ± 2.0 19.1 ± 0.8 15.8 ± 4.3 b 19.2 ± 0.9 15.8 ± 4.3 b 16.8 ± 3.5 b, c 

15 19.9 ± 0.5 19.5 ± 2.4 19.3 ± 0.3 18.0 ± 2.6 17.5 ± 2.6 19.3 ± 0.7 15.8 ± 4.2 b 19.3 ± 0.8 15.8 ± 4.2 b 16.8 ± 3.5 b, c 

20 19.9 ± 0.5 19.5 ± 2.0 19.4 ± 0.3 18.1 ± 2.5 17.1 ± 3.0 19.3 ± 0.7 16.2 ± 3.8 19.4 ± 0.7 15.8 ± 4.2 b 16.8 ± 3.5 b, c 

25 19.8 ± 0.5 19.6 ± 1.6 19.4 ± 0.2 17.9 ± 2.7 16.5 ± 3.5 19.4 ± 0.6 16.1 ± 3.8 19.4 ± 0.7 15.8 ± 4.2 b 16.8 ± 3.5 b, c 

Mean deviation ± 
mean uncertainty 0.4 ± 1.1 0.7 ± 2.8 0.8 ± 0.7 2.0 ± 2.5 2.4 ± 2.5 0.9 ± 0.8 4.1 ± 4.1 0.8 ± 0.9 4.2 ± 4.3 3.2 ± 3.5 

Inherited 

5 27.3 ± 6.1 29.2 ± 18.4 28.9 ± 4.4 29.9 ± 6.2 N/A a 26.2 ± 4.5 c 37.9 ± 16.8 b 46.6 ± 16.7 c 37.9 ± 16.8 b 43.9 ± 16.4 b, c 

10 23.4 ± 4.3 28.8 ± 15.5 27.8 ± 2.4 31.0 ± 8.8 27.5 ± 4.8 23.3 ± 2.0 c 34.1 ± 11.5 60.2 ± 16.3 c 34.1 ± 11.5 45.7 ± 19.3 b, c 

15 24.0 ± 4.3 26.9 ± 13.0 28.2 ± 1.3 30.5 ± 8.0 31.2 ± 8.1 25.5 ± 1.3 c 35.3 ± 12.9 68.0 ± 15.2 c 35.3 ± 12.9 39.7 ± 13.8 c 

20 22.1 ± 1.8 26.7 ± 11.9 28.1 ± 0.9 30.3 ± 7.6 32.6 ± 9.5 26.6 ± 1.0 36.0 ± 13.8 73.3 ± 14.4 c 36.0 ± 13.8 41.1 ± 15.2 c 

25 21.7 ± 1.6 26.7 ± 11.3 28.2 ± 1.0 30.7 ± 8.4 34.8 ± 12.2 27.7 ± 1.1 34.8 ± 12.2 77.1 ± 13.4 c 36.5 ± 14.4 42.0 ± 16.1 c 

Mean deviation ± 
mean uncertainty 3.7 ± 3.6 7.7 ± 14.0 8.3 ± 2.0 10.5 ± 7.8 11.5 ± 8.7 5.9 ± 2.0  15.6 ± 13.5 45.0 ± 15.2 16.0 ± 13.9 22.5 ± 16.2 

Number of failures 0 0 0 0 1 4 4 6 6 10 
 703 



5.2. Synthetic datasets with bidirectional skew 704 

The synthetic datasets developed by Applegate et al. (2012) provide useful end-member scenarios for 705 
analyzing statistical performance. TCN datasets often incorporate both positive (e.g., inheritance) and 706 
negative skew (e.g., erosion, exhumation, shielding), however, reflecting the characteristics of the 707 
geomorphic system and the genetic history of the landform (Ivy-Ochs et al., 2007; Pallàs et al., 2010; 708 
Tomkins et al., 2021). As a result, combining the degraded and inherited components of the Applegate et 709 
al. (2012) datasets would not produce TCN age distributions that accurately reflect the relative frequencies 710 
and magnitudes of pre- and post-depositional processes. To address this, we constructed two new synthetic 711 
data pools with more realistic bidirectional skew, based on statistics from glacial compilations (see Dortch 712 
et al., 2013; Murari et al., 2014; and references within). 713 
 714 
Based on analysis of exposure-age distributions from across the Himalayan-Tibetan Orogen, Dortch et al. 715 
(2013; n = 595 ages) and Murari et al. (2014; n = 934 ages) concluded that for recent to Last Glacial 716 
Maximum (gLGM; ~18–26 ka; see Hughes et al., 2013) glacial landforms, approximately 73 percent of 717 
exposure ages matched the calculated age of deposition, and the remaining ages were either younger (~17 718 
percent) or older (~10 percent). By comparison, for landforms deposited prior to the gLGM, only about 42 719 
percent of exposure ages matched the calculated deposition age. Of the remaining exposure ages, most 720 
were younger than the age of the landform (~48 percent) with only 10 percent being too old. For both 721 
datasets, the average magnitude of under- and overestimation was approximately 45 percent and 722 
approximately 175 percent, respectively. Using these observations as a reasonable first-order 723 
approximation of a typical TCN dataset, we developed two synthetic data pools (n = 104 exposure ages) 724 
with assigned landform ages of 22 ka and 60 ka to represent gLGM and pre-gLGM stages (see Fig. 10, 725 
Appendix S1). 726 
 727 
This new synthetic data pool served as a basis to evaluate P-CAAT bandwidth performance and the effects 728 
of component Gaussian selection across a range of sampling resolutions. Random ages were drawn from 729 
the data pool without replication to generate 10,000 individual datasets at several sample sizes (n = 5, 6, 730 
7, 8, 9, 10, 15, 20, 25). The 60 ka five-sample dataset was generated twice to ensure meaningful variation 731 
was limited to sample size. This range was chosen to encompass typical TCN sampling approaches in 732 
which collecting five to six TCN samples from a single landform is common (Pallàs et al., 2010), and 733 
datasets comprising ≥ 20 samples for a single landform are rare but not unheard of (Rinterknecht et al., 734 
2006). To analyze these data, we processed each dataset (n = 19 × 104) and recorded the highest-735 
probability Gaussian and the oldest-component Gaussian (peak age ± 1σ) for each convergent model run 736 
(R2 ≥ 0.95), applying a three-sample minimum to reduce the probability of selecting inherited or non-737 
representative components (see Section 5.1). Successful model runs were those that produced component 738 
Gaussians with peak ages within 10 percent of the “true age” (22 ± 2.2 ka and 60 ± 6 ka). Because the 739 
input datasets varied markedly in size and clustering, results are based on the narrowest numeric bandwidth 740 
that P-CAAT could solve for. Full results are presented in Supplementary Table S2 for brevity. 741 
 742 



 743 

Fig. 10. Distribution plots showing all 10,000 ages in the 22 ka and 60 ka data pools, colored by point 744 
density (blue → red scale bar; blue to brown for color blind readers). The highest density forms a bullseye 745 
pattern in the correct ages scatter. For a full description of the construction of these synthetic datasets, see 746 
Appendix S1.  747 
 748 
5.2.1 Bandwidth performance 749 

P-CAAT returned consistent numeric bandwidths across the range of sample sizes (see Supplementary 750 
Fig. S2). Typically, STD/IQR provides the widest numeric bandwidths, followed by MADD then Mean, but 751 
the estimator that yields the smallest numerical bandwidth will vary based on the ratio of age uncertainties, 752 
deviation, and skewness of the dataset (see Fig. 2 for a contrasting example). The precision of the selected 753 
component Gaussian (σ) scales with the numeric bandwidth, with narrow bandwidths yielding smaller 754 
uncertainties than wide bandwidths, although the former are generally more difficult for P-CAAT to solve. 755 
The choice of bandwidth estimator is less critical on well-clustered data.  However, poorly clustered 756 
datasets demonstrate complex behavior when scaled against sample size (see Supplementary Fig. S4). 757 
Generally, the narrowest numeric bandwidth that P-CAAT can solve for (R2 ≥ 0.95) is preferred, although 758 
each model fit should be carefully assessed to avoid qualitatively poor model fits (e.g., nonlinear divergence 759 
or dispersion on a typical QQ plot). Further consideration should be given to wider bandwidths for old (>100 760 
ka) scattered datasets (see data analysis tutorial videos). 761 

5.2.2 Component Gaussian selection 762 

The number of component Gaussians isolated by P-CAAT varies with sample size, clustering, and 763 
bandwidth choice. Although P-CAAT solves > 99 percent of all datasets, obtaining an answer within 10 764 



percent of the “true” age is more difficult. Figure 11 visualizes the number of “correct” solves at each sample 765 
size for both the 22 ka and 60 ka datasets, with results subset by the selected component Gaussian (oldest 766 
vs. highest). 767 

The 22 ka dataset has a > 90 percent “correct” solve rate with the minimum sample size (n = 5), and the 768 
highest-probability component Gaussian is consistently correct (> 99 percent) as sample size increases (n 769 
≥ 8). By comparison, the oldest-component Gaussian outperforms the highest-probability component 770 
Gaussian by a significant margin for the 60 ka dataset. The highest-probability Gaussian gives a higher 771 
correct solve rate only when sample sizes are large (n ≥ 20). 772 

 773 

Fig. 11. Comparison plot of oldest (dashed lines) and highest-probability component Gaussians (solid lines) 774 
for the 22 ka (orange; brown-tan for color-blind readers) and 60 ka (black) datasets, quantified by the 775 
number of correct P-CAAT model runs (≤ 10 percent from the “true” age). The highest-probability Gaussian 776 
is consistently the most accurate for the 22 ka dataset, whereas the oldest-component Gaussian returns 777 
more accurate solutions for the 60 ka dataset at most sample sizes (n < 20). 778 

At all sample sizes, P-CAAT’s correct solve rate is lower for the 60 ka dataset, which primarily reflects the 779 
distribution of the underlying data (see Section 5.2). We argue, however, that the five-sample solve rate of 780 
55 percent (5,500 correct model runs) is very good considering that P-CAAT outperforms the 42 percent of 781 
the population of “correct” ages (see Fig. 10). Similarly, the initial solve rate of 92 percent for the 22 ka 782 
dataset exceeds the proportion of “correct” ages in the underlying data (73 percent). Outperforming the 783 
number of “correct” ages with only five ages demonstrates that P-CAAT is effective at removing significant 784 
pre- or post-depositional skew, even with an objective and non-contextual interpretation scheme, with 785 
performance improving as sample size increases. 786 

5.3. P-CAAT applications in geomorphic systems 787 

Based on the extensive testing described in Sections 5.1 and 5.2 and the interpretation above, we argue 788 
that in absence of geologic context, using P-CAAT and a consistent interpretation scheme could play a key 789 
role in standardizing TCN age interpretations. Although model assessment should be based on site-specific 790 
information, such as independent age control (e.g., 14C) or geomorphologic evidence, the following 791 
interpretation scheme should be used as a guide for component Gaussian selection. This guide is not 792 
necessarily prescriptive as alternative approaches may be required to ensure consistency with the geologic 793 
context. 794 



Based on analysis of the synthetic datasets above, and for glacial landforms deposited during or following 795 
the gLGM, we recommend using the highest-probability component Gaussian that encloses a minimum of 796 
three ages at 2σ to represent the age of the landform. In contrast, for landforms older than the gLGM, the 797 
oldest-component Gaussian is preferred for small sample sizes (n < 15) and the highest-probability 798 
Gaussian for large sample sizes (n ≥ 20). 799 

Although synthetic datasets were not explicitly developed for other landform types, an understanding of the 800 
associated geomorphic and TCN systems enables us to make the following initial recommendations. For 801 
landslides, and in particular large rock avalanches (Dortch et al., 2009), the distribution of TCN ages 802 
appears comparable to glacial deposits, where post-depositional processes prevail over pre-depositional 803 
exposure (Heyman et al., 2011). In turn, using the highest-probability component Gaussian on younger 804 
deposits and the oldest-component Gaussian on older deposits is theoretically prudent. In contrast, 805 
landforms subject to reworking (e.g., alluvial fans, flood deposits, and fluvial terraces) often preserve pre-806 
depositional exposure and incorporate inherited TCNs (Dortch et al., 2011a, b). For younger landforms, 807 
selecting the youngest component Gaussian may be required to offset high rates of inheritance (Hancock 808 
et al., 1999), whereas the highest-probability component Gaussian may be preferable for older landforms, 809 
because inherent landform stability mitigates some post-depositional processes and the relative difference 810 
between inherited and “true” ages diminishes with increasing age. Further work is necessary, however, to 811 
assess “typical” TCN age distributions for these landforms. 812 
 813 
7. Conclusion 814 
 815 
Geologic uncertainty (e.g., erosion, exhumation, shielding, nuclide inheritance) can profoundly influence 816 
the distribution of TCN datasets. Most common statistical approaches for outlier identification, however, 817 
assume a single underlying distribution, do not propagate external uncertainties, and provide arithmetic 818 
single solutions, irrespective of geologic context. To address these limitations, we developed the 819 
Probabilistic Cosmogenic Age Analysis Tool (P-CAAT), which uses a Monte Carlo approach to isolate 820 
component normal distributions (Gaussians) to remove pre- and post-depositional skew. Using synthetic 821 
datasets developed by Applegate et al. (2012), we demonstrated that P-CAAT consistently outperforms 822 
alternative statistical approaches, many of which are characterized by frequent failures and reduced 823 
accuracy and precision as sample size increases. Other probabilistic approaches (S-PDE & Press) perform 824 
well on degraded datasets, but less well on those influenced by inheritance. If alternatives to PDEs must 825 
be considered, we recommend 2-MAD over other more common approaches for detecting outliers and 826 
reporting results and stress the need to move beyond standard deviation-based approaches. 827 
 828 
New synthetic datasets (n = 104 each) based on typical TCN distributions observed in the Himalayan-829 
Tibetan Orogen (Dortch et al., 2013; Murari et al., 2014) were developed to guide component Gaussian 830 
selection. Results indicate that for glacial and rock avalanches deposited at or following the gLGM, users 831 
should typically select the highest-probability component Gaussian that encloses a minimum of three ages 832 
at 2σ to represent the age of the landform. By comparison, the oldest-component Gaussian is preferred for 833 
landforms older than the gLGM when sample sizes are small (n < 20). Further analysis is required to 834 
incorporate a wider range of landform types (e.g., flood deposits, alluvial fans, fluvial terraces), but applying 835 
a consistent interpretation scheme could aid in standardizing regional- or global-scale analyses, while 836 
minimizing uncertainty in landform-age analysis associated with the choice of statistical test. In summary, 837 
P-CAAT is optimized for analysis of TCN datasets, as it incorporates both systematic and geologic 838 
uncertainty, quantifies uncertainty directly from component Gaussians, enables multimodal distributions to 839 
be separated, and allows geologic context to inform landform-age analysis. To encourage wider testing and 840 
application of this standalone tool, P-CAAT is available for free, along with tutorial videos, to download at 841 
kgs.uky.edu/anorthite/PCAAT. 842 
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