Summary and Conclusions

The goal of this project was to summarize groundwater quality from wells and springs in basin management unit 5 (watersheds of the Big Sandy River, Little Sandy River, and Tygarts Creek in eastern Kentucky) and evaluate analyte concentrations with respect to criteria provided by the Division of Water. Thirty sites that had not been sampled previously were selected and sampled quarterly from fall 2002 through summer 2003. Results of those analyses were combined with data obtained from the Kentucky Groundwater Data Repository, which is the largest and most inclusive collection of information about groundwater in Kentucky. The water-quality data were compared to criteria provided by the Kentucky Division of Water, including maximum contaminant levels, secondary maximum contaminant levels, health advisory limits set by the U.S. Environmental Protection Agency, and other criteria established by the Division of Water.

The results show that the overall quality of Kentucky groundwater is generally good in the project area. This may be in part because of no extensive urban, industrial, or agricultural factors that could contribute nonpoint-source contamination. Coal mining, timber cutting, and oil and gas production occur in the area, and historically there has been a lack of adequate waste-disposal systems. Table 35 summarizes the findings.

Water properties (pH, total dissolved solids, total suspended solids, electrical conductance, and hardness), inorganic ions (chloride, sulfate, fluoride), and most metals (arsenic, barium, mercury, iron, and manganese) have natural sources and are largely controlled by bedrock lithology. Some exceptionally high values of conductance, chloride, and sulfate may be the effects of deep saline water associated with coal fields, oil and gas production, or leaking on-site waste-disposal systems, and some exceptionally low pH values may show the input of mine drainage. Some anomalously high metal concentrations may be natural or may be the result of human contamination; however, widespread nonpoint-source contamination is not suggested by these data.

Nutrient concentrations show the effects of both natural sources and nonpoint-source inputs. Nitratenitrogen concentrations that far exceeded natural contributions were common and probably caused by fertilizer applications. Ammonia-nitrogen concentrations were also commonly above recommended limits; however, this may have been caused by nitrogen from coal beds or leaf litter.

Pesticides and volatile organic chemicals are synthetic organic compounds that do not occur naturally. Although pesticides or volatile organic chemicals exceeded analytical detection limits at relatively few sites, the presence of any amounts of synthetic organic chemicals in groundwater indicates some contamination is occurring.

Throughout the project area, springs and shallow wells were more likely to have harmful levels of metals, nutrients, pesticides, and volatile organic chemicals than deeper wells. The potential contamination of the shallow groundwater system (springs and shallow wells) is cause for concern.

Acknowledgments

Many people contributed to this report. Jim Webb and Jo Blanset helped with data transfers. Rick Sergeant assisted with database management. Dan Carey helped with GIS issues. And Henry Francis helped resolve questions about analyte names, CAS numbers, and reporting practices. The final report was reviewed by Jim Dinger.

Funding for this project was provided in part by a grant from the U.S. Environmental Protection Agency as authorized by the Clean Water Act Amendments of 1987, Section 319(h) Nonpoint Source Implementation Grant C9994861-01.

	Parameter	No Strong Evidence for Nonpoint- Source Impact on Groundwater Quality	Some Evidence for Nonpoint- Source Impact on Groundwater Quality	Clear Evidence for Nonpoint- Source Impact on Groundwater Quality
Water Properties	Conductance Hardness pH Total dissolved solids Total suspended solids	x x x x x		
Inorganic lons	Chloride Sulfate Fluoride	X X X		
Metals	Arsenic Barium Iron Manganese Mercury	X X X X X		
Nutrients	Ammonia-nitrogen Nitrate-nitrogen Nitrite-nitrogen Orthophosphate Total phosphorus	X X X	Х	х
Water Properties	2,4-D Alachlor Atrazine Cyanazine Metolachlor Simazine	×	X X X X X	
Volatile Organic Compounds	Benzene Ethylbenzene Toluene Xylenes MTBE		X X X X X X	

Table 35. Summary	of nonpoint-source effects on	groundwater quality in	basin management unit 5.

References Cited

- Carey, D.I., Dinger, J.S., Davidson, O.B., Sergeant, R.E., Taraba, J.L., Ilvento, T.W., Coleman, S., Boone, R., and Knoth, L.M., 1993, Quality of private ground-water supplies in Kentucky: Kentucky Geological Survey, ser. 11, Information Circular 44, 155 p.
- Conrad, P.G., Carey, D.I., Webb, J.S., Dinger, J.S., Fisher, R.S., and McCourt, M.J., 1999a, Ground-water quality in Kentucky: Fluoride: Kentucky Geological Survey, ser. 12, Information Circular 1, 4 p.
- Conrad, P.G., Carey, D.I., Webb, J.S., Dinger, J.S., and Mc-Court, M.J., 1999b, Ground-water quality in Kentucky: Nitrate-nitrogen: Kentucky Geological Survey, ser. 11, Information Circular 60, 4 p.
- Faust, R.J., Banfield, G.R., and Willinger, G.A., 1980, A compilation of ground water quality data for Kentucky: U.S. Geological Survey Open-File Report 80-685, 963 p.
- Fetter, C.W., 1993, Contaminant hydrogeology: New York, Macmillan, 458 p.
- Fisher, R.S., 2002a, Ground-water quality in Kentucky: Arsenic: Kentucky Geological Survey, ser. 12, Information Circular 5, 4 p.
- Fisher, R.S., 2002b, Ground-water quality in Kentucky: pH: Kentucky Geological Survey, ser. 12, Information Circular 6, 4 p.
- Helsel, D.R., and Hirsch, R.B., 1992, Statistical methods in water resources: New York, Elsevier, 529 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hopkins, W.B., 1966, Fresh-saline water interface map of Kentucky: Kentucky Geological Survey, ser. 10, scale 1:500,000.
- Kentucky Division of Water, 2000, Cumberland River Basin and Four Rivers region: Status report: Kentucky Division of Water, unpaginated.
- Kentucky Geological Survey, 1999, Potential solutions to water supply problems in priority areas of Kentucky – Ground water atlas task 1 summary report: kgsweb. uky.edu/download/wrs/GWTASK1.PDF [accessed 08/27/2007].
- Mazor, E., 1991, Applied chemical and isotopic groundwater hydrology: New York, Halsted Press, 274 p.
- Newell, W.L., 1986, Physiography, *in* McDowell, R.C., 1986, The geology of Kentucky—A text to accompany the geologic map of Kentucky: U.S. Geological Survey Professional Paper 1151-H, p. H-64–H-68.
- Nriagu, J.O., ed., 1994a, Arsenic in the environment, part I: Cycling and characterization: New York, John Wiley, 430 p.

- Nriagu, J.O., ed., 1994b, Arsenic in the environment, part II: Human health and ecosystem effects: New York, John Wiley, 293 p.
- Price, W.E., Jr., Mull, D.S., and Kilburn, C., 1962, Reconnaissance of ground-water resources in the Eastern Coal Field region, Kentucky: U.S. Geological Survey Water-Supply Paper 1607, 56 p.
- Ray, J.A., and O'dell, P.W., 1993, Dispersion/velocity-rated groundwater sensitivity, *in* Beck, B.F., ed., Applied karst geology: Brookfield, Ver., A.A. Balkema, p. 19– 198.
- Ray, J.A., Webb, J.S., and O'dell, P.W., 1994, Groundwater sensitivity regions of Kentucky: Kentucky Department for Environmental Protection, scale 1:500,000.
- Smith, S.M., 2001, National geochemical database: Reformatted data from the National Uranium Resource Evaluation (NURE) Hydrochemical and Stream Sediment Reconnaissance (HSSR) Program, version 1.30: U.S. Geological Survey Open-File Report 97-492, greenwood. cr.usgs.gov/pub/open-file-reports/ofr-97-0492/ [accessed 08/27/2007].
- Sprinkle, C.L., Davis, R.W., and Mull, D.S., 1983, Evaluation of ground-water quality data from Kentucky: U.S. Geological Survey Water-Resources Investigations Report 83-4240, 65 p.
- U.S. Environmental Protection Agency, 1992, Statistical analysis of ground-water monitoring data at RCRA facilities: U.S. Environmental Protection Agency, 4 p.
- U.S. Environmental Protection Agency, 2006, Drinking water contaminants: www.epa.gov/safewater/ contaminants/ [accessed 08/27/2007].
- U.S. Environmental Protection Agency, 2007, Integrated Risk Information System: www.epa.gov/iris/ [accessed 08/27/2007].
- U.S. Geological Survey, 1976, Hydrologic unit map of Kentucky: U.S. Geological Survey Miscellaneous Map HU-17, scale 1:500,000.
- U.S. Geological Survey, 1999, The quality of our nation's waters – Nutrients and pesticides: U.S. Geological Survey Circular 1225, 82 p.
- U.S. Geological Survey, 2006, Explanation of hardness: water. usgs.owq/explanation.html [accessed 05/06/2006].
- Welch, A.H., Westjohn, D.B., Helsel, D.R., and Wanty, R.B., 2000, Arsenic in ground water of the United States: Occurrence and geochemistry: Ground Water, v. 38, no. 4, p. 589–604.
- Wunsch, D.R., 1993, Ground-water geochemistry and its relationship to the flow system at an unmined site in the Eastern Kentucky Coal Field: Kentucky Geological Survey, ser. 11, Thesis 5, 128 p.