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ABSTRACT OF DISSERTATION 
 
 
 
 
 

GEOLOGIC CONTROLS ON PLIO-PLEISTOCENE DRAINAGE EVOLUTION 
OF THE KENTUCKY RIVER IN CENTRAL KENTUCKY 

 
The primary goal of this project is to develop a relative chronology of events in 

the geologic history of the Kentucky River, and to consider the geologic controls on those 

events. This study utilized published geologic and topographic data, as well as field 

observations and extensive compilation and comparison of digital data, to examine the 

fluvial record preserved in the Kentucky River valley in central Kentucky. Numerous 

fluvial features including abandoned paleovalleys, fluvial terraces and deposits, bedrock 

benches, and relict spillways between adjacent river valleys were identified during the 

course of the study.  

The morphology of the modern valley coincides with bedrock lithology and can 

be used to describe the distribution and preservation of modern and ancient fluvial 

deposits and features in the study area. Bedrock lithology is the dominant control on 

valley morphology and on the distribution and preservation of fluvial deposits and 

features in the study area. Some stream trends are inherited from the late Paleozoic 

drainage of the Alleghanian orogeny. More recent inheritance of valley morphology has 

resulted from the erosion of the river from one lithology down into another lithology with 



differing erosional susceptibility, thus superposing the meander patterns of the overlying 

valley style onto the underlying lithology. 

One major drainage reorganization related to a pre-Illinoisan glacial advance 

disrupted the northward flow of the Old Kentucky River toward the Teays River system 

and led to organization of the early Ohio River. This greatly reduced the distance to base-

level, and led to abrupt incision and a change in erosional style for the Kentucky River.  

The successful projection of valley morphologies on the basis of bedrock 

stratigraphy, the history of erosion suggested by fission track data and the results of this 

study, as well as soil thickness and development, all argue against the existence of a mid- 

to late-Tertiary, low-relief, regional erosional surface. This study instead hypothesizes 

that the apparent accordance of ridge-top elevations in the study area is a reflection of a 

fluvially downwasted late Paleozoic depositional surface. 

 

KEYWORDS: Quaternary geology, fluvial geomorphology, landscape evolution, 

Kentucky River Palisades, Teays River 

 

 

 

 
 

 
William Morton Andrews Jr. 
 
June 15, 2004 
 



 
 
 
 
 
 
 
 
 
 
 

GEOLOGIC CONTROLS ON PLIO-PLEISTOCENE DRAINAGE EVOLUTION 
OF THE KENTUCKY RIVER IN CENTRAL KENTUCKY 

 
 
 

By 
 

William Morton Andrews Jr. 
 
 
 
 
 
 
 
 
 
 
 
 
 

William A. Thomas 
Director of Dissertation 

 
Frank R. Ettensohn 

Department Chairman 
 

June 15, 2004 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RULES FOR THE USE OF DISSERTATIONS 
 
 

Unpublished dissertations submitted for the Doctor’s degree and deposited in the 
University of Kentucky Library are as rule open for inspection, but are to be used only 
with due regard to the rights of the authors. Bibliographical references may be noted, but 
quotations or summaries of parts may be published only with the permission of the 
author, and with the usual scholarly acknowledgments. 
 
Extensive copying or publication of the dissertation in whole or in part also requires the 
consent of the Dean of the Graduate School of the University of Kentucky. 

 
 



 
 
 
 
 
 
 
 
 
 
 

DISSERTATION 
 
 
 
 
 
 
 
 

William Morton Andrews Jr. 
 
 
 
 
 
 
 
 
 
 
 

The Graduate School 
 

University of Kentucky 
 

2004 
 



 
 
 
 
 
 
 
 
 

GEOLOGIC CONTROLS ON PLIO-PLEISTOCENE DRAINAGE EVOLUTION 
OF THE KENTUCKY RIVER IN CENTRAL KENTUCKY 

 
 
 
 
 

____________________________________ 
 

DISSERTATION 
____________________________________ 

 
A dissertation submitted in partial fulfillment of the 

Requirements for the degree of Doctor of Philosophy in the 
College of Arts and Sciences 

At the University of Kentucky 
 
 
 

By 
William M. Andrews Jr. 

 
Lexington, Kentucky 

 
Director: Dr. William A. Thomas, Professor of Geological Sciences 

 
Lexington, Kentucky 

 
2004 

 
Copyright © William Morton Andrews Jr. 2004 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To Dr. John C. Ferm (1925-1999) and Dr. Nicholas Rast (1927-2001):  
 

I never got to say this before: your words and teachings have served me well. Thank you. 
 



 iii

ACKNOWLEDGMENTS 
 

Although this project was conducted independently, no undertaking of this magnitude can 

be completed without the assistance and support of numerous individuals and organizations. The 

Kentucky Geological Survey, and State Geologist James C. Cobb, provided invaluable support 

for this dissertation, including computer facilities and software, open access to databases, access 

to field vehicles, and release from my normal duties to complete the project. The Southeastern 

Section Geological Society of America provided Student Travel Grants to assist with 

presentation of results at scientific meetings. My dissertation advisory committee has provided 

valuable insight and direction: William A. Thomas, Frank R. Ettensohn, David P. Moecher 

(Dept. of Geological Sciences), and Jonathan D. Phillips (Dept. of Geography). Michael D. 

Mullen (Dept. of Agronomy) agreed to serve as outside examiner. Steve Hornbeck and Tres 

Henn at the Louisville District, U.S. Army Corps of Engineers helped locate and acquire data 

from the Corps’ archives. David Hamilton provided data from reports housed at the Kentucky 

River Authority. Access to key properties was graciously granted by Belleview Sand and Gravel, 

Delvin Reese, the Nature Conservancy, Kentucky State Nature Preserves, and numerous private 

landowners. Discussions with Joseph Ray (Kentucky Division of Water), Darryl Granger 

(Purdue University), Paul Potter (University of Cincinnati), Roy Vanarsdale (University of 

Memphis), Ned Bleuer (Indiana Geological Survey), and with Steve Cordiviola, Jim Dinger, Jim 

Currens, Randy Paylor, and Garland Dever (Kentucky Geological Survey) helped to shape and 

sharpen the concepts presented in this work. Assistance with field work was provided by John 

Hickman, Bethany Overfield, Doug Curl, Matt Crawford, Kieran Hosey, Steve Greb, and Mike 

Murphy (Kentucky Geological Survey); Ned Bleuer, John Hill, Marnie Dixon, and Steve Brown 

(Indiana Geological Survey); Stan Totten (Hanover College); Alex Stewart (Dept. of Geological 

Sciences); Zach Musselman, Linda Martin, Viva Nordberg, and Kristin Adams (Dept. of 

Geography); and Julian Campbell (Nature Conservancy). 

Finally, but by no means the least, the patience and support of my family has been well 

beyond the call of duty. I couldn’t have done it without them. I extend my deepest gratitude to 

everyone—family, friends, and colleagues—who have provided support and assistance 

throughout this project. 



 iv

TABLE OF CONTENTS 
 
ACKNOWLEDGMENTS ................................................................................................. vi 
LIST OF TABLES............................................................................................................. vi 
LIST OF FIGURES .......................................................................................................... vii 
LIST OF FILES ................................................................................................................. xi 
CHAPTER ONE:  INTRODUCTION AND BACKGROUND......................................... 1 

Overview......................................................................................................................... 1 
Study Area and Setting ................................................................................................... 1 

Physiography............................................................................................................... 1 
Climate and Original Landcover................................................................................. 4 
Stratigraphy................................................................................................................. 4 

High Bridge Group ................................................................................................. 6 
Lexington Limestone .............................................................................................. 6 
Upper Ordovician Units........................................................................................ 10 
Silurian and Devonian Units................................................................................. 10 
Borden Formation ................................................................................................. 13 
Slade and Paragon Formations.............................................................................. 13 
Pennsylvanian Units.............................................................................................. 13 
Cretaceous and Early Tertiary Units..................................................................... 15 
Late Tertiary and Quaternary................................................................................ 15 

Structural Geology.................................................................................................... 17 
Structural and Stratigraphic Profile .......................................................................... 19 

Background................................................................................................................... 19 
Fluvial Processes....................................................................................................... 19 
Colluvial Processes ................................................................................................... 24 
Karst.......................................................................................................................... 25 
Landscape Evolution................................................................................................. 26 

Previous Work .............................................................................................................. 29 
Kentucky River Deposits and Geomorphology ........................................................ 29 
Regional Glacial Geology......................................................................................... 34 

Methods......................................................................................................................... 36 
CHAPTER TWO:  OBSERVATIONS AND INTERPRETATIONS.............................. 42 

Engineering and Land-use Impacts............................................................................... 42 
Kentucky River Geomorphology.................................................................................. 43 

Drainage Area ........................................................................................................... 43 
Drainage Density ...................................................................................................... 48 
Stream Trends ........................................................................................................... 49 
Abandoned Meanders ............................................................................................... 52 
Longitudinal Profile .................................................................................................. 52 

Bedrock Valley ..................................................................................................... 52 
Tributary Profiles .................................................................................................. 55 
Flood Frequency and Magnitude .......................................................................... 66 

Valley Morphology................................................................................................... 66 
Valley Width......................................................................................................... 66 
Sinuosity ............................................................................................................... 68 
Valley Morphology Styles .................................................................................... 73 



 v

Fluvial Deposits and Associated Features .................................................................... 84 
Glacial Deposits and Erratics.................................................................................... 84 
Valley-Bottom Fluvial Deposits ............................................................................... 93 
High-Level Fluvial Deposits..................................................................................... 96 

Irvine Formation ................................................................................................... 96 
Paleovalleys and High-Level Abandoned Meanders.......................................... 101 
Linear Paleochannels .......................................................................................... 101 
Bedrock Benches ................................................................................................ 107 
Profile of Fluvial Deposits and Features............................................................. 107 

Fluvial Deposits and Bedrock Stratigraphy ............................................................ 111 
Supra-upland Deposits ............................................................................................ 118 

Adjacent Streams ........................................................................................................ 120 
Licking River .......................................................................................................... 120 
Salt River ................................................................................................................ 120 
Teays and Ohio Rivers............................................................................................ 126 

CHAPTER THREE:  GEOCHRONOLOGY, MODELING, AND CONSTRAINTS... 130 
Time Scale and Climate .............................................................................................. 130 

Cosmogenic Radionuclide Dating .......................................................................... 133 
Background......................................................................................................... 133 
Cosmogenic Burial-Age and Erosion-Rate Studies............................................ 137 

Lateral Erosion Rates.............................................................................................. 143 
Paleomagnetic Data ................................................................................................ 146 

Glacial Loading and Crustal Flexure .......................................................................... 147 
Overburden Reconstruction and Paleogeography....................................................... 154 

Implications for Landscape Evolution .................................................................... 161 
CHAPTER FOUR:  IMPLICATIONS AND DISCUSSION ......................................... 164 

Relative Chronology ................................................................................................... 164 
Early Depositional Slope ........................................................................................ 164 
Early to Mid Tertiary Record Absent ..................................................................... 165 
Early Glaciations..................................................................................................... 166 
Spillways................................................................................................................. 167 
Kentucky River Incision ......................................................................................... 170 
Illinoisan and Wisconsin Alluviation...................................................................... 172 

Reconciliation of Erosion Rate Estimates................................................................... 173 
Controls on Fluvial Evolution..................................................................................... 175 

Lithologic Control................................................................................................... 175 
Relict Landforms and Inheritance........................................................................... 175 
Glaciation and Drainage Reorganization ................................................................ 176 

Implications for Landscape Evolution ........................................................................ 177 
Summary and Conclusions ......................................................................................... 178 

APPENDIX 1.................................................................................................................. 181 
APPENDIX 2.................................................................................................................. 187 
APPENDIX 3.................................................................................................................. 190 
APPENDIX 4.................................................................................................................. 192 
REFERENCES ............................................................................................................... 202 
VITA............................................................................................................................... 213 



 vi

LIST OF TABLES 

 
Table 1. Comparison of different measures of distance along the Kentucky River……...41 
Table 2. Locks and dams constructed on the Kentucky River…………………………...44 
Table 3. Drainage areas of the Kentucky River and selected tributaries…………………49 
Table 4. Explanation of symbols used in flexure calculations…………………….…….148 
 

 



 vii

LIST OF FIGURES 

 
Figure 1. Map of the Kentucky River and key tributaries………………………………………..2 
Figure 2. Physiography of the study area………………………………………………………...3 
Figure 3. Photographs of physiographic features in central Kentucky…………………………...5 
Figure 4. Geologic map of the study area………………………………………………………...7 
Figure 5. Stratigraphic column of bedrock units in the Kentucky River valley………………….8 
Figure 6. Photographs of High Bridge Group rocks……………………………………………...9 
Figure 7. Photographs of Lexington Limestone rocks…………………………………………..11 
Figure 8. Photographs of Upper Ordovician, Silurian, Devonian and Mississippian rocks…….12 
Figure 9. Photographs of Corbin Sandstone…………………………………………………….14 
Figure 10. Photographs of Cretaceous and Tertiary sediments in the Jackson Purchase region..16 
Figure 11. Major structural features in central Kentucky……………………………………….18 
Figure 12. Stratigraphic profile along Kentucky River valley…………………………………..20 
Figure 13. Photograph of fluvial quarrying of bedrock………………………………………….22 
Figure 14. Distribution of sinkholes in central Kentucky……………………………………….27 
Figure 15. Distribution of fluvial deposits and associated features noted in the publications of 

Willard Rouse Jillson…………………………………………………………………….31 
Figure 16. Relationship of the Old Kentucky River to the ancient Teays River system………...33 
Figure 17. Location of sites visited during the course of the current study……………………...37 
Figure 18. Distribution of soils derived from terrace sediments and associated deposits……….38 
Figure 19. Locations of the 14 locks and dams built along the Kentucky River between 1840 and 

1917………………………………………………………………………………………45 
Figure 20. Photographs of locks and dams along the Kentucky River…………………………..46 
Figure 21. Drainage basin and major tributaries of the Kentucky River………………………...47 
Figure 22. Streams in the National Hydrologic Dataset for the Kentucky River basin………….50 
Figure 23. Drainage density for 7.5-minute quadrangles in the Kentucky River basin………….51 
Figure 24. Distribution of abandoned meanders in the Kentucky River valley………………….53 
Figure 25. Longitudinal profiles of the Kentucky River and major tributaries………………….54 
Figure 26. Longitudinal profile of the Kentucky River valley showing the profile of the buried 

bedrock valley……………………………………………………………………………56 
Figure 27. Longitudinal profiles of Kentucky River tributaries with drainage areas greater than 

1,000 km2………………………………………………………………………………...57 
Figure 28. Longitudinal profiles of Kentucky River tributaries with drainage areas between 250 

and 285 km2……………………………………………………………………………...58 
Figure 29. Longitudinal profiles of Kentucky River tributaries with drainage areas between 100 

and 200 km2……………………………………………………………………………...59 
Figure 30. Distribution of knickpoints on major tributaries in relation to bedrock geology……60 
Figure 31. Comparison of knickpoint distance versus tributary distance for small tributaries 

(drainage area less than 2.5 km2)………………………………………………………...62 
Figure 32. Comparison of knickpoint distance versus tributary distance for larger tributaries….63 
Figure 33. Comparison of knickpoint distance versus drainage area for larger tributaries……...64 
Figure 34. Comparison of knickpoint distance versus drainage area for small tributaries………65  
Figure 35. Longitudinal profile of the Kentucky River showing the profile of the calculated 500-

year flood, and the flood of record……………………………………………………….67 



 viii

Figure 36. Map illustrating method for measured alluviated valley width………………..……..69 
Figure 37. Width of mapped alluvium along the Kentucky River valley, showing inferred width 

zones……………………………………………………………………………………..70 
Figure 38. Map illustrating variation in valley distance and river distance………………...……71 
Figure 39. Cumulative excess river distance as one measure of sinuosity of the Kentucky River, 

showing inferred sinuosity zones…………….……………………………………….….72 
Figure 40. Sinuosity ratio (river distance/valley distance) as another measure of sinuosity of the 

Kentucky River………………………………………………………………………..…74 
Figure 41. Valley-style regions of the Kentucky River valley derived from alluvial-width, 

excess-river-distance, and sinuosity-ratio data……………………………………….….75 
Figure 42. Delineation of valley morphology styles identified in this study…………………….76 
Figure 43. Topographic map from the Worthville 7.5-minute quadrangle, showing the Worthville 

style of river sinuosity and valley morphology………………………………………….78 
Figure 44. Photographs of valley morphology styles downstream from Frankfort…………...…79 
Figure 45. Topographic map from the Gratz 7.5-minute quadrangle, showing the Gratz style of 

river sinuosity and valley morphology…………………………………………………..80 
Figure 46. Topographic map from the Tyrone 7.5-minute quadrangle, showing the Tyrone style 

of river sinuosity and valley morphology………………………………………………..81 
Figure 47. Photographs of valley morphology styles upstream from Frankfort…………………82 
Figure 48. Topographic map from the Wilmore 7.5-minute quadrangle, showing the Wilmore 

style of river sinuosity and valley morphology…………………………………………..83 
Figure 49. Topographic map from the Palmer 7.5-minute quadrangle, showing the Palmer style 

of river sinuosity and valley morphology………………………………………………..85 
Figure 50. Topographic map from the Valley View 7.5-minute quadrangle, showing the Valley 

View style of river sinuosity and valley morphology……………………………………86 
Figure 51. Topographic map from the Irvine 7.5-minute quadrangle, showing the Irvine style of 

river sinuosity and valley morphology…………………………………………………..87 
Figure 52. Topographic map from the Heidelburg 7.5-minute quadrangle, showing the 

Heidelburg style of river sinuosity and valley morphology………………………..…….88 
Figure 53. Stratigraphic column of glacial deposits and related stratigraphy in northern 

Kentucky…………………………………………………………………………………90 
Figure 54. Distribution of glacial deposits and related features near the mouth of the modern 

Kentucky River……………………………………………………………………..……91 
Figure 55. Distribution of glacial erratics beyond the mapped Pre-Wisconsin glacial limit…….92 
Figure 56. Longitudinal profile of the Kentucky River valley showing elevations of valley-

bottom deposits and elevations of glacial deposits near Carrollton…………………...…94 
Figure 57. Photo of outwash terrace, Pond Creek terrace………………………………………..95 
Figure 58. Interpreted longitudinal profile of valley-bottom deposits in the Kentucky River 

valley……………………………………………………………………………………..97 
Figure 59. Photographs of diagnostic high-level fluvial sediments……………………………...98 
Figure 60. Distribution of the Irvine Formation of Campbell (1898)……………………………99 
Figure 61. Photographs of high-level fluvial deposits………………………………………….100 
Figure 62. Distribution of high-level abandoned meanders and linear paleochannels in the 

Kentucky River valley………………………………………………………………….102 
Figure 63. Map showing abandoned meanders and linear paleochannels near the Kentucky River 

and Salt River drainage divide………………………………………………………….104 



 ix

Figure 64. Map showing linear paleochannels (purple lines) near Licking River divide………105 
Figure 65. Photographs of Levee paleochannel………………………………………………...106 
Figure 66. Detail of Gratz and Polsgrove 7.5-minute topographic quadrangles, showing 

prominent bedrock benches………………………………………………………….…108 
Figure 67. Longitudinal profile of the Kentucky River valley showing elevations of 

paleochannels, high-level fluvial deposits, including the Irvine Formation as mapped by 
Campbell (1898), bedrock benches, and spillways draining into and out of the Kentucky 
River basin……………………………………………………………………………...109 

Figure 68. Basal elevation of high-level fluvial deposits in the Kentucky River valley……….110 
Figure 69. Projection of valley morphology styles using bedrock stratigraphy………………..112 
Figure 70. Comparison of paleochannels in the Old Kentucky River and near Winchester with 

the Palmer valley-bottom morphology style……………………………………………114 
Figure 71. Comparison of paleochannels between Tyrone and High Bridge with the Gratz valley-

bottom morphology style……………………………………………………………….115 
Figure 72. Comparison of the distribution of Irvine Formation deposits with the Irvine valley-

bottom morphology style…………………………………………………………….…116 
Figure 73. Comparison of meanders in the Gratz, Tyrone, and Wilmore morphology styles.…117 
Figure 74. Distribution of fluvial features identified by Jillson (1963) across the central Kentucky 

upland……..…………………………………………………………………………….119 
Figure 75. Map of stream valleys adjacent to the Kentucky River discussed in this study…….121 
Figure 76. Detail view of topography near the point where the Salt River captured an ancient 

tributary of the Old Kentucky River……………………………………………………122 
Figure 77. Map of Crawford Spring groundwater basin, showing results of Kentucky Geological 

Survey dye-trace experiments in the southern Bluegrass region……………………….124 
Figure 78. Photograph of Crawford Spring…………………………………………………….125 
Figure 79. Teays River system paleodrainage and pre-Wisconsin glacial limits……..………..127 
Figure 80. Comparison of the Teays River and Old Kentucky River profiles with the bedrock and 

surface profiles of the modern Ohio River and Kentucky River…………………...…..128 
Figure 81. Composite time-scale compiled for this study…………………………………...…131 
Figure 82. Plot of 10Be concentration versus 26Al/10Be ratio. This diagram is used to interpret 

age and erosion rates from cosmogenic radionuclide studies………………………..…136 
Figure 83. Location of cosmogenic radionuclide studies discussed in the text………………...138 
Figure 84. Comparison of elevation versus age for Mammoth Cave sediments as determined by 

Granger and others (2000)……………………………………………………………...140 
Figure 85. An erosion-age plot of data in studies discussed in the text………………………...141 
Figure 86. Longitudinal profile of the Kentucky River valley showing elevations of 

paleochannels, high-level fluvial deposits, including the Irvine Formation as mapped by 
Campbell (1898), bedrock benches, and spillways draining into and out of the Kentucky 
River basin……………………………………………………………………………...144 

Figure 87. Composite time-scale compiled for this study, including results of regional 
cosmogenic-isotope studies discussed in the text………………………………………145 

Figure 88. Results of lithospheric flexural modeling performed for this study………….……..150 
Figure 89. Magnitude of displacement modeled for a 1000-m thick ice sheet in isostatic 

equilibrium at the mapped pre-Wisconsin glacial limit………………………………...152 
Figure 90. Estimated time of isostatic response of the lithosphere……………………………..153 



 x

Figure 91. Estimated extent of lake resulting from impoundment of river valleys by a generalized 
pre-Wisconsin glaciation at the mapped glacial limit. No isostatic flexure is imposed on 
the modern topography…………………………………………………………………155 

Figure 92. Estimated extent of lake resulting from impoundment of river valleys by a generalized 
pre-Wisconsin glaciation at the mapped glacial limit. Isostatic flexure is imposed on the 
modern topography……………………………………………………………………..156 

Figure 93. Overburden estimate using extrapolation of stratigraphic thickness and assuming 
stratigraphic units do not decrease in thickness toward the Cincinnati arch…..……….158 

Figure 94. Comparison of overburden estimates based on stratigraphic reconstruction with 
overburden estimates from conodont alteration studies and supported by thermal maturity 
studies on eastern Kentucky coal beds………………………………………….………159 

Figure 95. Paleogeography and paleodrainage during the late Paleozoic……………………...160 
Figure 96. Thermal histories interpreted from fission-track studies on zircons and apatites in 

Ordovician bentonites and apatites in Pennsylvanian sandstones……………………...162 
Figure 97. Comparison of Salt River spillway elevation with the “floor” of fluvial deposits and 

the projected tributary grade……………………………………………………………169 
 

 



 1

CHAPTER ONE:  INTRODUCTION AND BACKGROUND 

Overview 

The primary goal of this project is to develop a relative chronology of events in the 

Pliocene and Pleistocene geologic history of the Kentucky River, and to consider the 

implications for broader understanding of regional geologic history, landscape evolution, and 

controls on this fluvial system. The Kentucky River is a significant tributary of the modern Ohio 

River, and was a major tributary of the ancient Teays River system, the northwest-flowing 

precursor of the modern Ohio River (Teller and Goldthwait, 1991). An understanding of the 

geologic history of the Kentucky River could help to answer questions about the formation of the 

Ohio and the demise of the Teays. The Kentucky River flows across a variety of sedimentary 

rocks as it drains central and eastern Kentucky, and provides an opportunity to consider effects 

of bedrock lithology on development of the river system. A clear understanding of the evolution 

of the Kentucky River can also provide clues to broader mechanisms of landscape evolution and 

landform development. 

Study Area and Setting 

This study will focus on the area of the modern main stem of the Kentucky River and 

associated tributaries and paleo-features, from approximately Irvine to Carrollton, Kentucky 

(Figure 1). The geographic extent of the study is constrained by the distribution and reliability of 

identification of ancient fluvial deposits in central Kentucky. Many of these deposits are 

identified through the presence of quartz pebbles presumably derived from Lower Pennsylvanian 

and younger conglomeratic sandstones that are exposed along the western outcrop belt of 

Pennsylvanian strata in eastern Kentucky and farther east. Similar quartz pebbles are not found 

in older Paleozoic strata exposed in central Kentucky. 

Physiography 

The Kentucky River basin crosses parts of the Cumberland Plateau and Bluegrass regions 

of Kentucky (Figure 2). The Cumberland Plateau consists of relatively steep, high-relief hills and 

ridges on Pennsylvanian shales and sandstones. Relief and average slopes increase to the 

southeast. The Cumberland Escarpment separates the Cumberland Plateau from the 

topographically lower Bluegrass region to the west. The Bluegrass can be separated into three  
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Figure 1. Map of the Kentucky River and key tributaries, showing the area 
of consideration in the current study.
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 4

general subregions, on the basis of topographic characteristics (McFarlan, 1943). The Inner 

Bluegrass consists of gently rolling hills, with extensive karst in Upper Ordovician limestones. 

Where it crosses the Inner Bluegrass, the Kentucky River has eroded a steep gorge known as the 

Palisades (Figure 3a). The Bluegrass Hills region (Eden Shale Belt of McFarlan, 1943) is a belt 

of steep hills surrounding the Inner Bluegrass. The Bluegrass Hills are in areas dominated by the 

Clays Ferry and Kope Formations. The Outer Bluegrass topography is more gently rolling than 

the Bluegrass Hills, but less so than the Inner Bluegrass. The Outer Bluegrass region is on 

limestones and shales of Late Ordovician age. Around the circumference of the Bluegrass region 

in Kentucky is a belt of conical hills, known as the Knobs, on Devonian and Mississippian rocks 

(Figure 3b) (McFarlan, 1943). The Knobs are erosional outliers of the Pennyroyal to the south 

and the Cumberland Plateau to the east. The Pennyroyal, on Mississippian limestones, is a 

plateau intermediate in elevation between the Cumberland Plateau and the Bluegrass region. 

Climate and Original Landcover 

The modern climate of Kentucky can be classified as humid subtropical (Ulack and 

others, 1998). The average annual temperature is 54°F to 58°F (12.2°C to 14.5°C). The state 

receives an average of 45 to 50 inches (114 to 127 cm) of precipitation per year, including 10 to 

12 inches (25 to 30 cm) of snow. Prior to European settlement, the vegetation of Kentucky was 

dominated by deciduous forests with local savannas (Woods and others, 2002). Pollen records 

indicate that during previous, colder Late Pleistocene climates, pine and spruce dominated the 

native vegetation (Wilkins and others, 1991). 

Stratigraphy 

From 1960 to 1978, the joint Kentucky Geological Survey (KGS) and U.S. Geological 

Survey (USGS) Geologic Mapping Program provided complete 1:24,000-scale geologic 

mapping for the entire state of Kentucky. The program provided published paper geologic maps 

for each 7.5-minute USGS quadrangle, as well as a comprehensive update of the stratigraphy and 

lithology. Cressman and Noger (1976), Cressman (1973), Weir and others (1984), McDowell 

(1983), Ettensohn and others (1984), Rice and Others (1979) and Rice (1984) summarized the 

stratigraphic data for the study area. McDowell (1986) summarized the stratigraphic results in a 

text report to accompany a 1:250,000-scale geologic map of Kentucky (McDowell and others, 

1981) derived from the 1:24,000-scale mapping. A more recent program of the KGS (1996 to  



Figure 3. Photographs of physiographic features in central Kentucky. A: View of 
the Palisades of the Kentucky River at Camp Nelson. B: The wooded hills on the 
horizon are the Knobs on the southern border of the Bluegrass in Boyle County.
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present), funded by the USGS StateMap Program, is digitizing the original 1:24,000 geologic 

maps to enable use with Geographic Information System (GIS) software. The digitized geologic 

maps are available for the entire study area, and were used extensively in this study. Appendix 1 

summarizes the geological quadrangles and Appendix 2 summarizes the digital datasets used in 

this study. 

Strata exposed in the Kentucky River basin range from Late Ordovician to Middle 

Pennsylvanian in age. Figure 4 shows the distribution of the different rock units in the Kentucky 

River basin. Figure 5 shows the generalized stratigraphic column for the study area. Except 

where noted, the following descriptions are summarized from discussions in McDowell (1986). 

High Bridge Group  

The Upper Ordovician High Bridge Group is the oldest stratigraphic unit exposed in 

Kentucky, and contains three formations. From oldest to youngest, they are the Camp Nelson 

Limestone, the Oregon Formation, and the Tyrone Limestone. The Camp Nelson Limestone 

consists of thick-bedded to massive, fine-grained, dolomitic limestone (Figure 6a). The Camp 

Nelson is not completely exposed, but 320 feet (97.5 m) can be measured near Camp Nelson. 

Shale content is minimal, except for a zone within 20 feet (6 m) of the top of the formation. The 

Oregon Formation is characterized by thick-bedded dolostone interbedded with fine-grained 

limestone. The thickness varies across the area, reaching a maximum of 65 feet (20 m) near 

Boonesboro. The thickness variation is reciprocal with the overlying Tyrone Limestone. The 

Tyrone ranges from 55 to 155 feet (17 to 47 m) thick, and is characterized by thick-bedded, 

micritic limestone (Figure 6b). The unit contains a significant quantity of shale in the upper half, 

including at least two thick and several thinner bentonite layers. The bentonites are clay-rich and 

thus relatively easy to erode, and can assist in undermining the overlying limestone beds of the 

Tyrone. 

Lexington Limestone 

The Upper Ordovician Lexington Limestone is a complex mosaic of rock units 

dominated by thin-bedded limestone. The formation ranges from 190 to 320 feet (58 to 98 m) 

thick across central Kentucky. Various members in the formation are primarily distinguished on 

the basis of shale content and bedding characteristics. The lower part of the Lexington Limestone 

is dominated by the Grier Member, which contains thin- to medium-bedded limestones with  
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Figure 6. Photographs of High Bridge Group rocks in central Kentucky. A: Thick-
bedded to massive limestone in the Camp Nelson Limestone. B: Medium- to 
thick-bedded limestone interbedded with thin shale partings in the Tyrone 
Limestone. Wooden stake is 1.2 m long.
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common thin shale partings (Figure 7a); it ranges from 100 to 180 feet (30 to 55 m) thick. The 

Tanglewood Member includes multiple zones of cross-bedded calcarenite in the upper part of the 

Lexington Limestone (Figure 7b). The Logana Member, near the bottom part of the Lexington, 

and the Brannon and Millersburg Members (Figure 7c,d) in the upper part of the Lexington 

contain significant amounts of shale (>30%) interbedded with thin-bedded limestone. The upper 

parts of the Lexington (the Brannon Member and above) intertongue laterally with the overlying 

Upper Ordovician Clays Ferry Formation (Kope Formation). The uppermost parts of the 

Lexington Limestone are likely Upper Ordovician (Edenian). 

Younger Upper Ordovician Units 

The Upper Ordovician strata of central Kentucky consist primarily of thin-bedded, 

interbedded limestone, calcareous shale, and siltstone. The units are distinguished on the basis of 

the dominance of a particular lithology compared to adjacent strata. Thickness of the combined 

Upper Ordovician section is approximately 300 m; the Kope / Clays Ferry Formation has a 

maximum thickness of 100 m. The Clays Ferry, Kope, and Bull Fork Formations are dominated 

by interbedded shale (commonly >50%) and limestone (Figure 8a). The Garrard Siltstone 

consists of thin- to thick-bedded siltstone interbedded with shale and limestone. The Calloway 

Creek Limestone contains approximately 70% thin-bedded, fossiliferous limestone interbedded 

with shale. The Grant Lake Limestone contains 70 to 90% thin-bedded limestone interbedded 

with shale. The Ashlock Formation is a complex unit of intertonguing limestone and shale. The 

Ashlock grades northward into the Grant Lake Limestone. The Drakes Formation contains a 

lower unit, the Rowland Member, dominated by thin- to thick-bedded silty dolostones and 

limestone. The overlying Preachersville Member in the southeastern Bluegrass contains 

interbedded shale and limestone and dolostone. In the western Bluegrass, the Rowland is 

overlain by the shaly Bardstown Member and the massive, dolomitic Saluda Member.  

Silurian and Devonian Units 

Silurian strata in the study area consist primarily of interbedded dolostone and shale. The 

basal unit, the Lower Silurian Brassfield Dolomite, consists of a lower massive dolostone 

overlain by thin-bedded dolostone with thin shale interbeds. The overlying Middle Silurian Crab 

Orchard Formation (or Group, see discussion in McDowell, 1983, 1986) consists of alternate 

units of clay shale and thin- to thick-bedded dolostone (Figure 8b). The Middle Devonian Boyle  
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Figure 8. Photographs of Upper Ordovician, Silurian, Devonian, and Mississippian 
rocks in east-central Kentucky. A: Interbedded shale and thin-bedded limestone in 
the  Upper Ordovician Clays Ferry Formation. B: Interbedded shale and dolostone
of the Silurian Crab Orchard Formation overlain by massive dolostone of the 
Middle Devonian Boyle Dolomite. C: Black shale of the New Albany Shale (photo 
by Warren Anderson). D: Siltstone and shale in the Mississippian Borden 
Formation, overlain by limestone and dolostone in the Slade Formation.
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Dolomite uncomformably overlies Middle Silurian to Upper Ordovician strata across central 

Kentucky. The Boyle is a thick-bedded to massive dolostone, ranging from 0 to 60 feet (0 to 18 

m) thick across the area (Figure 8b). The Upper Devonian New Albany Shale consists of 

laminated to thin-bedded carbonaceous shale. This black, organic-rich shale typically weathers 

into intact plates or slabs (Figure 8c). 

Borden Formation 

In the study area, the Lower Mississippian Borden Formation is divided into three 

members. The Nancy Member is dominated by green-gray clay shale with minor amounts of 

silty shale and siltstone. The Cowbell Member contains medium- to thick-bedded siltstone with 

thin shale interbeds (Figure 8d). The Nada Member contains clay shale with sparse thin 

limestone interbeds (Figure 8d). The overlying Renfro Member, a thick-bedded dolostone, was 

mapped with the Nada Member during the KGS-USGS Geologic Mapping Program (McDowell, 

1986), but has since been re-assigned to the Slade Formation and associated with overlying 

carbonate rocks (Ettensohn and others, 1984). Upper parts of the Borden Formation locally 

contain numerous geodes. 

Slade and Paragon Formations 

The Upper Mississippian Slade Formation is dominated by thick-bedded limestone with 

minor dolostone (Figure 8d), and is locally truncated or eroded beneath a Lower Pennsylvanian 

unconformity (Rice, 1986). The St Louis Member of the Slade contains the distinctive coral 

fossil Lithostrotion sp. The Slade Formation is the caprock on the Cumberland Escarpment in the 

main valley of the Kentucky River. The Upper Mississippian Paragon Formation is thin, and is 

present only locally in the Kentucky River basin. It contains red and green clay shale and 

limestone. 

Pennsylvanian Units 

Lower Pennsylvanian shale, sandstone and coal overlie the Mississippian strata and are at 

the surface throughout the headwaters region of the Kentucky River (the Three Forks of the 

Kentucky River). The Corbin Sandstone is a thick conglomeratic sandstone in the Lower 

Pennsylvanian rocks. The Corbin contains abundant quartz pebbles (Figure 9a), and is inferred to 

be a source of quartz gravel found in fluvial deposits downstream. The Corbin, however, is only  



Figure 9. Photographs of Corbin Sandstone in eastern Kentucky. A: Slabs of 
conglomerate from the Corbin Sandstone, showing abundant quartz gravel. B: 
Prominent cliffs in Corbin Sandstone near Slade, Kentucky.
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a few tens of feet thick in the main valley of the Kentucky River; much of the original thickness 

and extent in this area have been eroded away. In the Red River valley, however, the Corbin 

Sandstone is more than 200 feet (60 m) thick, and is a prominent cliff former (Figure 9b). Along 

much of the Cumberland Escarpment, the Corbin Sandstone or similar thick quartzose 

sandstones form the caprock of the Cumberland Escarpment, above the Slade Formation. The 

Grundy and Pikeville Formations are composed of shale, sandstone, siltstone, and coal, and are 

typical of the strata underlying most of the Cumberland Plateau in the headwaters region of the 

Kentucky River. 

Cretaceous and Early Tertiary Units 

Although Mesozoic through mid-Tertiary rocks have not been identified in the Kentucky 

River basin, significant Late Cretaceous through Early Oligocene deposits are found in the 

Jackson Purchase of far western Kentucky (Figure 3, inset). The Jackson Purchase region 

represents the northernmost extension of the Gulf Coastal Plain. The unconsolidated deposits of 

gravel, sand, silt, and clay were deposited in a complex facies mosaic of fluvial, deltaic, 

lacustrine, lagoonal, and marine environments (Figure 10) (Olive, 1980). These deposits are 

significant to the current study because some of the units are interpreted as marine in origin, and 

thus suggest that sea-level (global base level) was in or near far-western Kentucky from the Late 

Cretaceous until the Late Eocene. The close proximity of sea level would preclude deep fluvial 

incision below that level, and thus discourage extensive fluvial erosion and denudation in 

adjacent areas. 

Late Tertiary and Quaternary 

The youngest sedimentary deposits identified in Kentucky are of Late Tertiary to 

Quaternary in age. The KGS-USGS mapping program and earlier workers identified fluvial, 

glacial, glacio-fluvial, lacustrine, and eolian sediments mantling bedrock and older 

unconsolidated sediments across the state. Older fluvial sediments are inferred to be Miocene(?) 

to Pleistocene in age, and are represented by gravel, sand, silt, and clay in terrace and 

paleochannel deposits at various distances above the elevations of modern streams. Younger 

fluvial deposits include gravel, sand, silt, and clay in terraces and alluvium in valley bottom 

settings along most streams in the study area. Glacial deposits include till and drift deposits 

found in northern Kentucky. Older till, inferred to be pre-Illinoisan in age, has been mapped  



Figure 10. Photographs of Cretaceous and Tertiary sediments in the Jackson 
Purchase region. A: Gravel deposit in the Cretaceous Tuscaloosa Formation. B: 
sand, clay, and lignite in the Eocene Claiborne Formation, overlain by brownish-
orange late Tertiary fluvial gravel (photo by Brandon Nuttall).
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along uplands adjacent to the Ohio River from Oldham County to Pendleton County. Illinoisan 

till has been identified in and near the Ohio River valley in the same area. Wisconsin till has not 

been identified in Kentucky. Glacio-fluvial deposits include pre-Illinoisan outwash preserved in 

paleovalleys in Boone, Gallatin, and Carroll Counties, as well as Illinoisan and Wisconsin 

outwash, which comprise most of the valley-fill sediments in the Ohio River valley. Lacustrine 

deposits are mapped primarily in Ohio-River tributaries that were impounded by rapid 

alluviation and high flow volumes of Illinoisan and Wisconsin glacial outwash in the main Ohio 

River valley. Eolian deposits include sand dunes and loess derived from outwash deposits in the 

Ohio, Wabash, and Mississippi River valleys. Sand dunes are restricted mainly to the southern 

valley margins of the Ohio River valley. Loess of various thicknesses blankets much of the 

uplands south of the Ohio River. Further discussion of the Late Tertiary and Quaternary deposits 

of the study area is provided in Chapter 2. 

Structural Geology 

The study area straddles the Cincinnati arch, a broad, north-northeast trending, regional 

anticline separating the Appalachian basin on the east from the Illinois basin on the west 

(McDowell, 1986). The Jessamine dome is a relatively high area along the crest of the Cincinnati 

arch, and lower Upper Ordovician rocks are exposed at the surface. Progressively younger rocks 

are preserved away from the dome in all directions. The Appalachian basin, which includes 

eastern Kentucky, is a composite foreland basin, activated several times during the Paleozoic by 

loading during mountain-building events in the Appalachian orogen to the east (Colton, 1970; 

Milici and de Witt, 1988; Rast, 1989). Pennsylvanian rocks are exposed at the surface in the 

Appalachian basin in Kentucky. The Illinois basin is a continental interior basin, also with 

Pennsylvanian rocks at the surface. Strata in the Appalachian basin in eastern Kentucky dip to 

the southeast, whereas those in the Illinois basin in north-central Kentucky dip westward. Pine 

Mountain, in far southeastern Kentucky, is the northwesternmost exposed thrust fault of the final 

Appalachian orogeny, the Alleghenian.  

The Lexington fault system trends north-northeast along the crest of the Cincinnati arch 

(Figure 11). Near Camp Nelson, the fault system juxtaposes younger Upper Ordovician rocks 

against High Bridge strata. The Kentucky River fault system branches northeast from the 

Lexington fault system; this fault system also brings High Bridge rocks to the level of the Upper  
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Ordovician Clays Ferry Formation. The Kentucky River generally parallels the Kentucky River 

fault system between Boonesboro and Camp Nelson. The Irvine Paint Creek fault system has 

approximately 200 ft (60 m) of down-to-the-south offset, and roughly parallels the Kentucky 

River fault system (Figure 11). Numerous smaller faults are mapped through the basin, many 

with a general northwest trend. 

Structural and Stratigraphic Profile 

The stratigraphy and structure along the longitudinal profile of the Kentucky River valley 

are shown in Figure 12. The elevations of stratigraphic tops were collected from geologic 

quadrangle maps along the entire length of the valley at 1 to 3 kilometer intervals. In general, the 

rock units dip away from the axis of the Cincinnati arch, the top of which is shown on Figure 12 

approximately 180 km from the mouth of the Kentucky River. Fault offsets accommodate a 

significant portion of the dip, especially along the eastern flank of the arch. The reversed dips, 

toward the axis of the arch, are an artifact of the valley meanders. Locally, fault offsets introduce 

significant lithologic contrasts along the valley. 

Background 

Fluvial Processes 

The mechanical process of fluvial incision is a key consideration in discussing the 

evolution of a fluvial system through time. Much of the modern Kentucky River is flowing over 

a thin veneer of unconsolidated fluvial deposits. However, to incise the existing valley, the river 

must have eroded through the native bedrock, rather than through unconsolidated materials. In 

rivers eroding into bedrock (“bedrock streams”), the key processes that have been identified are 

quarrying and abrasion; cavitation and dissolution also play important roles. Both bedrock-

erosion processes require the stream flow to have access to the bedrock surface, and thus any 

overlying sediment must be removed before bedrock erosion occurs. Although multiple variables 

are involved in the erosion processes, they all track with flow velocity, so it can be considered 

that the velocity of water flow near the rock surface primarily controls both processes (Hancock 

and others, 1998). 

Of the two bedrock-erosion processes, quarrying is the most effective mechanism where 

bedding planes or joints are spaced closely enough together and optimally oriented (Miller,  
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1991). Before blocks can be moved, they must be geomorphically “prepared” for removal by 

enlargement, weathering, or weakening of bounding surfaces of the block. When a threshold 

velocity of flow is surpassed, quarrying of properly prepared blocks can progress (Figure 13). 

Flows greatly exceeding the threshold will be able to quarry significantly larger blocks. Areas of 

constricted channel width and knickpoints will be areas of increased water-surface slope, and 

thus focused locations of bedrock quarrying (Hancock and others, 1998). Bedrock with very 

thick bedding and/or widely spaced joints produces blocks too large for streams to remove by 

quarrying, and limits the effectiveness of the process. 

Abrasion results from the impact of entrained sediment grains upon the bedrock surface, 

dislodging a fraction of the impacted bedrock. The process, by definition, requires the presence 

of a significant sediment load in the stream (Hancock and others, 1998). Streams with minimal 

sediment load are not able to effectively abrade underlying bedrock. Because of channel-margin 

friction, flow velocities immediately adjacent to the bedrock surface are typically quite low, so 

enough momentum must be acquired in the main flow, and the sediment separated from the main 

flow, for grains to impact the bedrock surface with enough kinetic energy to dislodge parts of the 

bedrock (Hancock and others, 1998). As such, only very high flows are effective agents of 

abrasion. Abrasion is likely a punctuated process; significant erosion occurs only during 

maximum flows.  

In addition to quarrying and abrasion, slaking and dissolution may also contribute to 

bedrock erosion. Discussions of the quarrying and abrasion processes focus upon resistant 

lithologies such as limestone and sandstone. Shale, however, comprises a significant component 

of the stratigraphy in the study area, and must be considered. Three different distinct shale types 

can be generalized from the stratigraphy of central Kentucky: clay shale, calcareous shale, and 

black (organic-rich) shale. Clay shales typically have a very low slake durability, thus implying 

they mechanically erode very easily in the presence of water. Although clay has a high cohesion, 

aggregates of clay minerals can be excavated in a way similar to that of larger and less cohesive 

silt and sand grains. Calcareous shales, some with carbonate contents as much as 70% (Fisher, 

1968) but with enough clay to behave somewhat like clay shales, are susceptible to erosion by 

combination of dissolution and mechanical/slaking erosion. The black shales in Kentucky have 

high organic contents, and weather very differently from the clay and calcareous shales. Some  



Figure 13. Photograph of fluvial quarrying of bedrock along Hickman Creek in 
eastern Jessamine County (Highway 1541 bridge). The stream is flowing over a 
knickpoint in the Middle Ordovician Oregon Formation at this site. Block 
indicated by arrow is approximately 1 m wide.

22
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parts of the black shales tend to erode by quarrying into chips, plates, and slabs, and have 

somewhat higher slake durability than clay shales. 

Interbeds of shale with more resistant rock greatly facilitate preparation of blocks for 

quarrying as the intervening shale is more readily eroded (by slaking) than the resistant beds. The 

rapid excavation and removal of shale leaves the intervening resistant layers more exposed and 

susceptible to quarrying in less time than in relatively “pure” resistant rocks. Thus, 

characteristics of the bedrock—especially bedding thickness, joint spacing, and shale content—

in conjunction with the velocity of the stream flow, play key roles in the erosion of bedrock by 

streams. 

Average velocity in a stream varies with stream slope and discharge, among other 

variables. Even in relatively low-slope areas, high discharges result in relatively high velocities 

(Knighton, 1998). Drainage area is a reliable proxy for relative discharge estimations in areas of 

similar hydrologic response (Knighton, 1998). Velocity is not, however, uniformly distributed 

within a channel profile, and is locally susceptible to numerous variables. Friction with the 

stream bed slows velocities near the water-bed interface. In relatively straight stretches of 

streams where channels are relatively symmetrical, the highest velocities are concentrated in the 

center of the channel, and close to the surface (Knighton, 1998). In asymmetric channels, such as 

those in the bends of meandering streams, flow velocities are highest toward the outside of the 

bend, because the momentum of the flow carries it closer to the outside bank (Knighton, 1998). 

The sharp velocity gradients along the outer banks of meandering streams cause greater 

turbulence and this results in lateral erosion being a major component of the erosional activity of 

the stream. 

Base level is identified as the elevation to which a stream is ultimately flowing, whether a 

lake, ocean, or other larger body of water. Different scales of base level can be identified, from a 

global base level (mean sea level) to localized base levels (lakes, larger streams, ponds, etc). A 

stream only immediately responds to the next local base level downstream. 

Ideally, a fluvial system will evolve over time to produce an equilibrium longitudinal 

profile that is concave upward with an exponentially decreasing slope from headwaters to mouth. 

This ideal profile is sometimes referred to as the “graded” profile of the stream (Gilbert, 1877; 

Mackin, 1948). The slope of this curve is inversely proportional to the discharge of the stream. In 
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areas with minimal variation in climate or precipitation delivery, drainage area can serve as a 

general proxy for potential discharge. Average stream slope, ideally, would thus decrease with 

progressive increase in contributing drainage area. Change in base level, change in discharge, or 

adjustments to the course or drainage area of the stream (through the process of stream capture) 

will result in an adjustment of the longitudinal profile, either through erosion (degradation) or 

sedimentation (aggradation) in the stream valley. 

Sharp deflections from the ideal longitudinal profile, where distinct convexities exist in 

the longitudinal profile, are called knickpoints. Knickpoints primarily form by one of four 

different mechanisms: upstream propagation of adjustments to base-level, differential erosion of 

bedrock in the stream bed, localized neotectonic offsets, and sites where coarser bedload are 

introduced into the stream (Seidl and others, 1994). A knickpoint may develop where lithologies 

of contrasting erodibility are exposed in the stream channel. Resistant lithologies will erode more 

slowly than softer lithologies, producing a convex deflection in the stream profile as the channel 

downstream erodes more swiftly into softer bedrock. Knickpoints may develop where an abrupt 

geomorphic disruption (e.g. introduction of a large volume of sediment from a tributary) to the 

stream equilibrium produces a localized steepening of the stream. Introduction of coarse bedload 

into a stream channel from a tributary may create a knickpoint as the stream adjusts to the coarse 

deposit in the channel. The knickpoint will migrate upstream, and the gradient below the 

knickpoint will gradually become shallower, until the knickpoint merges into a new equilibrium 

profile somewhere upstream. Neotectonic offset of the stream bed can also cause development of 

a knickpoint by uplifting one side of a fault, or by juxtaposing contrasting lithologies in the 

stream bed. 

Colluvial Processes 

Fluvial erosion is a relatively localized process, and works in conjunction with colluvial 

processes to modify the landscape. As fluvial erosion deepens a valley and steepens the adjacent 

slopes, colluvial activity works to reduce the angle of the oversteepened slopes (Easterbrook, 

1999). Bedrock lithology determines the style of colluvial activity (Ritter and others, 1995). 

Bedrock units with thick resistant beds usually degrade by rock falls enabled by sapping of 

underlying soft shaly strata. Slopes on shale-dominated stratigraphy degrade by slumping and 

creep processes. Slope angles decrease gradually until a stable angle of repose is reached, 
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whereupon slope-wash processes become dominant. Slope wash gains effectiveness with 

increasing contribution area and slope gradient (Knighton, 1998), and thus, in the long term, will 

tend to not greatly reduce slopes but more likely cause them to retreat parallel or steepen, 

reactivating the colluvial processes. The toe of a colluvial slope can gradually become armored 

with colluvial debris, and thus limit further mass wasting activity (Ritter and others, 1995), 

unless a mechanism such as fluvial erosion can “clean” the slope toe and remove the colluvial 

debris from the system. Nevertheless, significant slope retreat would typically require fluvial 

erosion of the adjacent valley to maintain the retreat process.  

Karst 

The exposure of numerous limestone-dominated stratigraphic units in the study area has 

led to significant karst development in the soluble lithologies. Karst is significant for this study, 

because karst processes operate differently from fluvial or colluvial processes to erode or modify 

landscapes. Fluvial erosion may be an agent of very rapid denudation; local fluvial incision rates 

as great as 600 m/m.y. have been documented in the eastern United States (Stanford and others, 

2002). However, fluvial erosion is dependent on stream flow, is commonly most effective only 

under high-energy conditions, and is thus episodic and spatially concentrated. Karst dissolution 

may operate almost continuously in low- to high-energy situations in humid climates. Landscape 

denudation through karst dissolution is largely controlled by climate, and more specifically by 

precipitation rates (Jennings, 1985; White, 1988). Soil cover and vegetation help to accelerate 

karst dissolution processes (Trudgill, 1977). Karst denudation rates have been estimated to range 

from 35 to 40 m/m.y. (Jennings, 1985; White, 1988). Although karst dissolution is a slower 

method of landscape denudation in the short term, the more continuous nature of karst 

dissolution may have significant impact in landscape modification (Simms, 2004). In tectonically 

stable areas, karst dissolution may progressively bevel a landscape to a low-relief corrosion plain 

(Smart and others, 1986). Karst conduit development also can divert surface flow underground, 

and thus reduce the surface flow available for fluvial erosion. Underground conduit systems may 

also capture surface drainage and reroute surface flow under surface drainage divides. 

Karst in central Kentucky is concentrated in areas where limestone-dominated 

stratigraphic units are exposed at the surface, especially the High Bridge Group and Lexington 

Limestone (Figure 14). Thrailkill (1982) provided a review of karst distribution and processes in 
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the central Kentucky area. Sinkhole distribution in the area north of Lexington displays a 

distinctly linear pattern, and is likely controlled by bedrock joints (Thrailkill, 1982). Sinkholes 

follow more meandering paths south of this area, and may reflect geomorphically controlled 

development in old valley systems. Across much of the Bluegrass region, karst conduit systems 

are shallow and nearly horizontal, draining to and graded to larger streams in the area. Smaller 

karst systems are stratigraphically controlled, perched above less soluble lithologies. Closer to 

the modern Kentucky River valley, the karst systems have a more vertical aspect, with steep pits 

and drops, compared to more horizontally oriented systems away from the deeply entrenched 

valley (Thrailkill, 1982). 

Landscape Evolution 

Two fundamentally different landscape-evolution models were classically applied to the 

study of landscapes in the eastern U.S. One followed the model of Davis (1902, 1909) in 

hypothesizing a cyclic pattern of landscape evolution. This model proposed that a landscape 

begins as an uplifted surface of relatively low relief, and that as it matures, it will be 

progressively dissected. Once the landscape is thoroughly dissected, slopes will progressively 

flatten and retreat from stream valley axes. Eventually a regional, low-relief, erosional landscape 

is graded to sea-level or a regional base-level. This surface would bevel the landscape regardless 

of underlying lithology. Davis (1902) termed this regional erosional surface a peneplain. If base-

level changes, the surface is “reactivated” or “rejuvenated,” and incision begins to dissect the 

peneplain, restarting the cycle. The implication would be a record of geomorphic history in the 

planation surfaces and subsequent rejuvenations; each peneplain would record the end of a long 

period of stability. Phillips (2002), among others, noted that peneplain development requires a 

prolonged interval of tectonic, climatic, and base-level stability. 

Although the term “peneplain” technically refers to any nearly flat surface, the term 

should primarily be associated with the genetic implication of the Davis model. As other terms 

exist to describe low-relief surfaces (pediments, stripped surfaces, etc) without resorting to the 

term “peneplain,” this term as used in this report will refer only to the regional erosional surface 

that is the mature end stage of the Davis model, following the assertion of Thornbury (1954): 
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The term peneplain should be restricted to those gently undulating 

landscapes which develop under a base level control toward the end of a 

humid fluvial cycle in part through lateral planation by streams but more 

through mass-wasting and sheet wash on interstream areas than by stream 

erosion. Used in this sense, it has a definite meaning and implication in 

regard to the geomorphic history of the region that retains such a condition 

(p. 187)  

Another model of landscape evolution is that developed by Hack (1960, 1965, 1966). 

Hack identified lithologic control on erosional processes as the primary source of differing 

elevations and apparent planation surfaces in the eastern and southeastern United States. Hack 

proposed that landscapes downwaste at similar rates through time, with multiple fluvial and 

colluvial processes in delicate balance, unless the equilibrium of the system is somehow 

disturbed. The system rapidly adjusts, or attempts to adjust, to the disturbance to regain an 

equilibrium state. Distinctive landforms develop on particular rocks or structures, and persist 

through time as the entire landscape is downwasted somewhat steadily through time. The 

implication of the Hack model would be that planation surfaces are related to the erosional 

resistance of underlying strata, and do not represent chronological features. 

Most previous considerations of landscape evolution in central Kentucky have relied 

upon a Davisian cyclic-erosion model to explain development of landforms and landscape 

features. Fenneman (1939), Jillson (1930, 1945a, 1963), Thornbury (1965), Straw (1968), and 

Warwick (1985) have all invoked peneplain theory to describe the physiography and landscape 

evolution of central Kentucky. An apparent accordance of ridge-top elevations gently sloping to 

the northwest has been identified as the Lexington peneplain. The Lexington peneplain is held as 

a classic example of a peneplain surface produced by extended erosion, and is inferred to have 

been “reactivated” in the mid-Tertiary (Jillson 1930, 1943a, 1950, 1963) by regional uplift. 

Uplift is inferred on the basis of intrenchment of major streams and tributaries into the regional 

peneplain. The source or mechanism of this uplift has not been conclusively identified. 
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Previous Work 

The Kentucky River is a prominent geologic and geographic feature in central Kentucky. 

The scenery of the river, and the Palisades in particular, has attracted numerous artistic, 

photographic, and historical/cultural studies, as well as aroused scientific speculation as to the 

origin of the steep gorge cut through an otherwise gently rolling landscape. The Kentucky River 

is a major tributary of the modern Ohio River, and has been identified as the largest tributary of 

the Plio-Pleistocene Teays River system.  

Kentucky River Deposits and Geomorphology 

Although he cites others who had noted the presence of quartz pebbles, water-worn 

geodes, and Mississippian corals in the uplands on the Bluegrass, Miller (1895) was the first to 

suggest that these pebbles and cobbles were deposited by a through-flowing trunk stream, rather 

than let down as a residual deposit. He noted the restricted occurrence within relatively close 

proximity to the modern river, and typically below the elevation of the highest ridges but well 

above the modern river, as evidence that they were more likely related to older versions of the 

river system than to regional landscape lowering. A residual origin, he argued, would have led to 

their distribution across the entire area, rather than only close to the river valley. Campbell 

(1898) was the first to formally name high-level fluvial deposits between Richmond and Irvine 

as the Irvine Formation, but only provided limited description of details of these deposits. 

Foerste (1906) provided detailed descriptions of the Irvine Formation in the same area of east-

central Kentucky. Miller (1919), Leverett (1929), McFarlan (1943), and Straw (1968) all 

correlated the Irvine Formation with other upland gravel deposits along the Ohio River below the 

mouth of the Kentucky and with the Lafayette gravel of the Mississippi Embayment. Leverett 

(1929) identified a sharp bend in the Salt River near Lawrenceburg, Kentucky, southwest of the 

Kentucky River basin, as a capture of an early tributary of the Kentucky by the Salt River 

system. 

Willard Rouse Jillson conducted the most intensive field study focused on the deposits of 

the ancient Kentucky River. In a series of pamphlets (Jillson 1943b, 1944a, 1944b, 1945b, 

1946a, 1946b, 1946c, 1946d, 1947, 1948a, 1948b), Jillson characterized the nature of the 

deposits, including silt and sand and distinctive gravel composed of well-rounded quartz pebbles, 

water-worn geodes, and subrounded chert pebbles. He also noted slabs of sandstone in the 
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deposits at numerous locations. He termed these “typical Irvine gravels” and associated them 

with the formally named deposits identified farther upstream by Campbell (1898). On the basis 

of only rudimentary topographic mapping (the best available, but still crude by modern 

standards) and intensive field work, Jillson’s pamphlets also delineated and named abandoned 

paleochannels of the Kentucky River from Camp Nelson to Carrollton (Figure 15). Maps in the 

pamphlets note the location of more than 370 separate observations of fluvial sand and gravel 

and related valley features. Mappers in the joint KGS-USGS geologic-mapping program 

expanded upon the work of Jillson, Campbell, and Foerste, and delineated specific deposits of 

high-level fluvial sediment across central Kentucky. 

Jillson (1945a, 1963) also hypothesized an even older course of the Kentucky River 

traversing the Inner Bluegrass region from Winchester, through Georgetown, to Monterey, on 

the basis of quartz and granite pebbles found in selected sites across the region. Jillson 

speculated that the granite cobbles indicated that the Kentucky River originally had its 

headwaters in the Blue Ridge Mountains. He suggested that structural activity related to the 

Kentucky River fault system caused abandonment of this proposed ancient course of the river. 

Although a Blue Ridge paleo-origin of the Kentucky River is beyond the geographic scope of the 

current study area, the hypothesis can be constrained by the observations of this study. 

A series of Masters theses completed at Eastern Kentucky University, summarized by 

Vanarsdale (1986) and Vanarsdale and Sergeant (1992), used mapped fluvial deposits in the 

Kentucky River basin to investigate potential neotectonics in central Kentucky. The theses 

selected a series of fluvial deposits that overlie mapped faults identified during the KGS-USGS 

mapping. Trenching and coring were used to look for potential offset and disturbance in the 

deposits that might indicate structures active since deposition of the fluvial material. The only 

disturbances identified were in deposits well above the course of the modern river. Although the 

disturbances might have been related to karst dissolution in underlying limestone bedrock, 

Vanarsdale (1986) cited the recurrence of deformation in multiple trenches and other site-

specific evidence to argue for a tectonic origin, supporting Jillson’s hypothesis of structural 

activity along these structures. 

Tight (1903) named the Teays River system for an abandoned high-level valley system 

he recognized in West Virginia and southeastern Ohio and inferred it to be “pre-glacial,”  
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hypothesizing that subsequent Pleistocene glaciations obstructed the Teays, facilitating formation 

of something similar to the modern Ohio. Subsequent work has traced the course of the Teays 

River system from West Virginia, across Ohio, central Indiana, and through Illinois (Figure 16) 

(summarized in Melhorn and Kempton, 1991).  

On the basis of detailed topographic mapping, extensive mapping of bedrock terraces and 

straths, delineation of bedrock valleys buried under Quaternary glacial deposits, and mapping of 

glacial, fluvial, and lacustrine deposits in upland paleovalleys, the Ohio River was likely formed 

by destruction of the Teays River system by pre-Illinoisan glaciation (Teller, 1973; Ray, 1974; 

Melhorn and Kempton, 1991, and references therein). The earliest Ohio River probably had its 

headwaters along the Madison divide, developed on resistant Silurian lithologies near Madison, 

Indiana (Figure 16). Another divide near Manchester, Ohio, separated Licking River-related 

drainage from New/Kanawa River drainage (Figure 16). Flooding of the Teays Valley as a result 

of prolonged blockage by pre-Illinoisan ice probably led to overflow across cols at these divides 

and development of new drainage pathways through the subsequently eroded cols. This newly 

expanded Ohio River flowed in a loop north of the modern site of Cincinnati, but otherwise 

followed the modern course of the river. A subsequent glaciation (Illinoisan?) caused the 

establishment of a new channel south of Cincinnati, notable for barbed tributaries in the vicinity 

of Anderson Ferry. The Wisconsin glaciation was marked by aggradation of the Ohio River 

valley by a thick valley-train deposit of glacio-fluvial outwash. 

The paleodrainage of the Kentucky River has been a matter of varied opinions and study 

for several decades. Some early workers disagreed over whether the ancient Kentucky River 

turned southwest at Carrollton and followed an early version of the Ohio River (Leverett, 1902; 

Fenneman 1914, 1916, 1938; Stout and others, 1943), or turned northeast and flowed into the 

ancient Teays River system (Fowke, 1898, 1900, 1925, 1933; Tight, 1903; Malott, 1922; Wayne, 

1952). The early Ohio River hypothesis proposed a paleodrainage divide somewhere upstream 

along the old Ohio from the mouth of the Kentucky, at Cincinnati or beyond. The Teays 

hypothesis suggested a paleodivide at Madison, Indiana.  

Swadley (1971) delineated and characterized a paleocourse of the Old Kentucky River 

from Carrollton, Kentucky, to near Lawrenceburg, Indiana (Figure 16), on the basis of data from 

his geologic mapping in the area. He based a northward to southward reversal of flow on the  
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juxtaposition of lacustrine and glacial deposits over the high-level fluvial material. No 

paleochannels or high-level fluvial deposits were identified along the Ohio River valley between 

Carrollton and Madison during the mapping program. Also on the basis of mapping from the 

KGS-USGS program, Luft (1980, 1986) examined high-level deposits in the Licking River 

valley and discussed their implication for geologic evolution of the Licking River and its major 

tributaries. On the basis of this mapping and other mapping work around Cincinnati (“AF” on 

Figure 16) (references in Luft, 1980), both the ancient Licking and the ancient Kentucky were 

traced to the Teays system (Figure 16). The major drainage divide between the Teays River and 

early Ohio River basins was at Madison, Indiana. 

Warwick (1985) tested a hypothesis of river response to regional base level lowering in 

the Kentucky River valley.  In a study that extended from Carrollton to Camp Nelson (Figure 

16), Warwick used valley and knickpoint geometries to develop a model of how the Kentucky 

River responded to base-level lowering upon abandonment of the ancient Teays River and 

establishment of the early Ohio River. Although Warwick noted numerous instances of 

lithologic/stratigraphic control on knickpoints and valley morphology, his conclusions focus on 

geomorphic/temporal control on knickpoint development in streams tributary to the Kentucky 

River. Warwick (1985) inferred migration of a master knickpoint up the Kentucky River valley. 

The only quantitative geochronologic evidence from Pleistocene and older Kentucky 

River deposits comes from recent applications of cosmogenic-radionuclide geochronology. A 

quantitative technique for estimating the exposure or burial ages of sediments relies upon the 

production of selected radionuclides from the bombardment of the Earth by cosmic radiation. 

Granger and Smith (2000) produced a cosmogenic beryllium-production model age of 

approximately 1.5 to 1.74 Ma for Irvine Formation deposits near Rice Station in Estill County, 

Kentucky (Figure 16). Dating of deposits near Carrollton (Figure 16) produced an age estimate 

of 1.3 to 1.45 Ma (Granger, personal communication, 2001). 

Regional Glacial Geology 

Classic studies identified four Pleistocene glaciations in the midwestern United States. 

These glaciations were named for states in which “type” deposits were recognized, from 

youngest to oldest: Wisconsin, Illinoisan, Kansan, and Nebraskan (eg. Ray, 1974). Subsequent 

geochronological work in the midwestern states, however, has identified as many as 12 different 
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till deposits and noted miscorrelations among many glacial deposits in the region. As such, only 

two “named” glaciations are currently recognized in the region: the Wisconsin and the Illinoisan. 

Glacial deposits older than the Illinoisan are termed “pre-Illinoisan” and identified sequentially 

by letter (Richmond and Fullerton, 1986). As many as seven different distinct tills have been 

identified in the buried Teays Bedrock Valley in Indiana (Bleuer, 1991) and four pre-Illinoisan 

tills have been identified south of the Wisconsin glacial limit in Decatur County, Indiana (Teller, 

1972). Wisconsin ice did not reach as far south as Kentucky, and only glacial outwash deposits 

from the Wisconsin are found in the Ohio River valley. Illinoisan deposits include drift and/or till 

deposits along the Ohio River from just above Cincinnati to possibly as far south as Louisville 

(Ray, 1974). Two pre-Illinoisan glacial deposits have been inferred for northeastern Kentucky 

(Leighton and Ray, 1965; Ray, 1966, 1974), although published USGS geologic quadrangle 

maps do not differentiate the pre-Illinoisan deposits. Johnson (1986) and Fullerton (1986) 

summarized the stratigraphic relationships of glacial, fluvial, lacustrine, and eolian deposits and 

related pedologic features in Illinois, Indiana, Ohio, and northern Kentucky. 

The pre-Illinoisan glaciations disrupted the Teays River system, and possibly caused the 

subsequent organization of the Ohio River system (Tight, 1903; Gray, 1991; Teller and 

Goldthwait, 1991). A glacial advance into the Teays valley would have caused impoundment of 

the river valley, until a low point on the downstream divide (“col”) was overtopped, allowing the 

valley to drain. If the blockage persisted, and the col acted as a spillway for extended periods of 

time, then significant bedrock erosion through the col could lead to rerouting of the drainage 

system through the newly developed channel. Ettensohn (1974), Teller and Last (1981), and Luft 

(1980, 1986) identified extensive, high-level lacustrine deposits in the Licking River valley and 

attributed them to impoundment of the Licking River valley by a pre-Illinoisan glaciation. As 

such, spillways should have existed to drain the Licking River basin (and likely all upstream 

drainage from the Teays/early Ohio River system) into the Kentucky River basin to the 

southwest. No spillways of this sort have been documented, except for ice-proximal courses 

identified by Teller (1973). Swadley (1971) and Ettensohn (1974) have identified lacustrine 

deposits in the Old Kentucky River paleocourse between Carrollton and Cincinnati and inferred 

glacial impoundment as the cause of abandonment of this segment of the river valley. Teller and 

Goldthwait (1991) have suggested that the lack of thick lacustrine deposits upstream in the 

Kentucky River may indicate that the Kentucky was diverted to the southwest prior to the arrival 
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of the earliest glacial advance in the region. If the main stem of the Kentucky (upstream from 

Carrollton) were impounded, lacustrine deposits should exist in the valley or paleovalleys, or a 

low-relief col very close to the elevation of the ancient Kentucky River would have allowed 

drainage to occur without significant slackwater impoundment of the river valley. 

Methods 

Much of the previous research in the Kentucky River basin preceded the development of 

desktop computing. Recent advances in Geographic Information System (GIS) software and 

technology, and the resultant release and development of GIS-compatible data sets have 

provided a new tool available for spatial examination of new and previously published data for 

the study area. The first step for this project was assembling previously collected information 

gathered by other workers. This included information on the bedrock geology, fluvial deposits, 

soils, elevation, streams, and glacial features, all in digital format (Appendix 2). These data sets 

are very large (see Appendix 2), and required significant computing power to allow simultaneous 

comparison of the different data sets for the basin. Until recently, this would not have been 

possible without specialized computer facilities. The Kentucky Geological Survey graciously 

provided computer and software support for this project. 

KGS personnel have digitized all of the 1:24,000 geologic maps for the study area 

(Appendix 1). These maps include not only bedrock geology, but also unconsolidated materials 

such as alluvium, lacustrine deposits, and glacial deposits. Additional locations of fluvial 

deposits were collected from Jillson’s series of pamphlets on abandoned paleochannels of the 

Old Kentucky River (Jillson 1943b, 1944a, 1944b, 1945b, 1946a, 1946b, 1946c, 1946d, 1947, 

1948a, 1948b, 1963), from Joseph Ray (Kentucky Division of Water, personal communication, 

2001), and from field work during the course of this study. Figure 17 shows the locations of 174 

sites visited during the course of this study. Selected county soil surveys, published by the U.S. 

Department of Agriculture, have been digitized and included in the USDA Soil Survey 

Geographic (SSURGO) database. Soil mapping was completed at higher resolution than geologic 

mapping and, in some places, identified fluvial parent materials in soils where geologic maps 

overlooked them (Figure 18). Only the soil data for Scott County in central Kentucky were not 

available in digital format for the study area at the time of analysis. The USGS has developed 

high-resolution (10-meter cell size) digital elevation data for Kentucky and scanned topographic  
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maps for the study area, and both are available through the Kentucky Office of Geographic 

Information Systems (OGIS). Another USGS data set, the National Hydrologic Dataset (NHD) 

provides attributed centerlines of mapped streams in Kentucky. 

The elevation, geology, and soils data were examined to identify the locations of fluvial 

deposits and potential paleovalleys and high-level abandoned meanders. In only a few places 

were the combined soil and geologic data sets insufficient to confirm potential fluvial deposits or 

paleovalleys, and field work was conducted to search for diagnostic sediment such as geodes or 

quartz pebbles (Figure 17). Numerous bedrock benches were identified from the digital elevation 

data and scanned topographic maps. The bedrock benches are too numerous to efficiently field 

check even a majority of the features, and they are delineated and identified separately from the 

confirmed fluvial deposits on cross sections in this study.  

Compilation of regional geochronologic measurements can serve to constrain the 

temporal framework of the relative chronology. Geophysical and hydrologic modeling, although 

imprecise, can also serve to constrain the possible processes and responses expected from 

lithospheric flexure and lake impoundment resulting from glacial loading. Published erosion and 

denudation rates can constrain the process rates in this study, in the absence of quantitative 

measurements and data. These calculations and constraints are discussed in more detail in 

Chapter 3. 

Ideally, comparison of elevations or discreet longitudinal profiles or alignments of the 

ancient river deposits will allow for development of a detailed relative chronology of 

downcutting and stream captures in the high-level deposits to be a straightforward, albeit tedious, 

process. Available geologic, geomorphic, and climate data can be used to infer controls on each 

capture or downcutting event. Possible controls on fluvial events in the Kentucky River basin are 

discussed in Chapter 4. Each system adjustment should also have resulting impacts on the rest of 

the system, as well, so ideally the sequence of events and their inter-relationships can be 

identified. 

Traditionally, distances along the Kentucky River have been measured in U.S. statute 

miles (5,280 ft, 1609.3 m), surveyed by the U.S. Army Corps of Engineers (USACE). Distances 

given in this study are derived from measurements along the lines provided in the U.S. 

Geological Survey National Hydrologic Dataset (NHD) data for the Kentucky River. The 
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digitized centerlines in the NHD dataset do not conform to the USACE-surveyed channel of the 

river, and thus do not duplicate the USACE values. Also, the NHD dataset is measured from the 

centerline of the Ohio River, thus adding approximately 0.4 km to the overall measured distance. 

Taking the 0.4-km difference into account, the NHD-derived distances are typically 2-3% greater 

than the USACE-surveyed values. The USACE survey followed the navigable channel of the 

Kentucky, whereas the NHD data follows the river centerline. Likewise, distances measured 

along the estimated centerline of the river valley do not duplicate values derived from the NHD 

river-centerline values, because of meandering of the river within the bedrock valley. Table 1 

compares distance values from the different sources. This study will primarily use valley 

distances calculated from the estimated centerline of the valley (“valley-km”), with values for 

selected landmarks summarized in Appendix 3. 

 

Copyright © William Morton Andrews Jr. 2004
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Table 1. Comparison of different measures of distance along the Kentucky River 

 

USACE USACE NHD This Study 
Feature miles km channel km valley km 

    

Mouth of Eagle Creek 11.0 17.7 18.6 15.3
Lock and Dam No. 4 (Frankfort) 65.0 104.6 108.2 80.2
Mouth of Dix River 118.2 190.2 195.3 152.7
Mouth of Red River 190.8 307.0 314.8 261.5
Confluence of North and South Forks 254.8 410.0 418.0 350.3
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CHAPTER TWO:  OBSERVATIONS AND INTERPRETATIONS 

This goal of this project is to interpret the geologic controls on the evolution of the 

Kentucky River. This requires a description and interpretation of preserved fluvial deposits and 

the geomorphology of the river valley. Map perspectives of valley geomorphology include 

drainage area, drainage density, meanders, and stream trends. Longitudinal perspectives include 

stream profiles and knickpoints of the master stream and tributaries, as well as flood-stage 

profiles of the main stream. Quantitative considerations of valley morphology include valley 

width and sinuosity. Qualitative descriptions of valley morphology include the identification of 

meanders and paleovalleys. Previously published observations and interpretations in adjacent 

stream valleys provide context for the observations of this study. Anthropogenic factors such as 

engineering and land-use changes obscure the natural geologic processes, and areas susceptible 

to these human-induced controls are excluded from this study. 

Engineering and Land-use Impacts 

Land-use changes and engineering modifications of the Kentucky River valley in the last 

200 years have had significant impacts on erosion and sedimentation in the basin. Archaeological 

studies at local sites, such as Fort Boonesboro (O’Malley, 1989) have identified significant 

landscape alterations caused by erosion and sedimentation attributed to engineering 

improvements and land-use change. Similar changes have been documented in the Salt River 

basin during planning for construction of Taylorsville Lake in the 1980s (Collins and Norville, 

1980). The land-use and engineering impacts have altered the surface of the alluvial valley fill, 

but not significantly changed buried deposits or terraces along the valley shoulders, both of 

which pre-date the land-use impact. Analysis of these surficial modifications would require 

stratigraphic and geochronological studies beyond the scope of the current effort. This study, 

therefore, will focus on evolution of the Kentucky River basin prior to human land-use impacts. 

Native peoples inhabited or hunted the Kentucky River basin from approximately 12,000 

years ago until displaced by European settlers in the late 18th century. The earliest inferred land-

use impacts in the basin are the localized burning of selected central Kentucky areas by Late 

Prehistoric native peoples to encourage growth of grassland and savannas, in order to attract 

buffalo for sustenance (Kingsolver, 1992). These burning events could have led to changes in 

sediment supply and run-off to the adjacent streams. The first non-native pioneers settled in the 



 43

basin in 1775, and began to intensively clear forests for agriculture, construction materials, and 

defense against native attacks (Harrison and Klotter, 1997). 

Timber, iron ore, and coal have been major economic natural resources within the basin, 

especially within the basins of the Three Forks. Surface disturbance and land-clearing associated 

with these industries led to major soil-erosion problems and significant siltation in the basin 

(Verhoeff, 1911; Johnson and Parrish, 1999). Timber has always been a significant resource for 

eastern Kentucky throughout the 19th and 20th centuries. Timber-cutting operations for much of 

this time caused significant soil erosion, and sediment loading of the Kentucky River. Iron was 

produced at charcoal-fired furnaces in the basin throughout much of the 19th century. Forests for 

miles around each furnace were cleared to produce the needed charcoal to fire the furnaces (Fig, 

undated). Coal was produced from mines at Beattyville as early as 1790, and shipped to markets 

down stream on rafts and boats. In the early 20th century, the penetration of railroads into eastern 

Kentucky allowed major expansion of the coal industry. With the advent of surface mining in 

eastern Kentucky in the 1950s, more sediment was introduced to the river system. 

To facilitate the transportation of these resources to downstream markets, a series of 14 

locks and dams was constructed on the Kentucky River (Table 2, Figure 19). The first dam was 

completed near Carrollton in 1840, but because of financial and political delays, the final dam 

was not completed at Beattyville until 1917 (Johnson and Parrish, 1999). These dams caused 

modifications to the flow and sedimentation patterns of the river (Figure 20), and thus contribute 

to the modifications mentioned above. However, the construction records of the dams provide 

information on the pre-settlement valley-fill deposits and, thus, serve as a source of geotechnical 

data for this study. 

Kentucky River Geomorphology 

Drainage Area 

The Kentucky River basin is contained entirely within the Commonwealth of Kentucky 

and drains a total area of 18,042 km2 (Figure 21) (Bower and Jackson, 1981). The mouth of the 

river is at Carrollton where it joins the Ohio River at mile 545.8 (measured from Pittsburgh, 

Pennsylvania). The main stem of the Kentucky River has its head 350 valley-km from its mouth 

at Beattyville at the confluence of the North, Middle, and South Forks of the Kentucky,  
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Table 2. Locks and dams constructed on the Kentucky River 

 

Feature Valley-km Upper pool (m) Construction Completed 
     

Ohio River at Carrollton 128.6  
Lock and Dam No 1 6.0 131.1 Ky 1841
Lock and Dam No 2 40.6 135.3 Ky 1840
Lock and Dam No 3 51.5 139.3 Ky 1840
Lock and Dam No 4 80.2 143.4 Ky 1840
Lock and Dam No 5 102.6 147.9 Ky 1841
Lock and Dam No 6 121.9 152.2 USACE 1891
Lock and Dam No 7 150.9 156.9 USACE 1897
Lock and Dam No 8 185.5 162.5 USACE 1900
Lock and Dam No 9 211.9 167.8 USACE 1903
Lock and Dam No 10 241.5 173.0 USACE 1905
Lock and Dam No 11 275.3 178.5 USACE 1906
Lock and Dam No 12 300.9 183.7 USACE 1910
Lock and Dam No 13 327.9 189.2 USACE 1914
Lock and Dam No 14 341.8 194.3 USACE 1917
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1905 breachoriginal structure

pre-breach bank position

A

B

Figure 20. Photographs of locks and dams along the Kentucky River. A: View of 
Lock and Dam No. 7 near Wilmore. B: View of Lock and Dam No. 10 near 
Boonesboro. In 1905 a flood breached Lock and Dam No. 10, eroding a new 73-m 
(240-ft) wide channel on the landward side of the lock (Johnson and Parrish, 1999). 
An extension was later built to block the breach.
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collectively referred to as the Three Forks. The Three Forks each have their headwaters on Pine 

Mountain, in the southeastern part of Kentucky; together they contribute 6,814 km2 to the 

drainage area of the basin. Major tributaries of the Kentucky River include Eagle Creek, Elkhorn 

Creek (including North Elkhorn Creek and South Elkhorn Creek), Dix River, and Red River; 

each contributes more than 1000 km2 to the drainage area of the basin. Table 3 summarizes the 

drainage areas of these and smaller tributaries. 

Drainage Density 

Drainage density is one parameter commonly used to characterize drainage basins. It is 

usually expressed as the length of streams in the basin divided by the total drainage area. 

Dd = ls/A 

The USGS NHD dataset (Figure 22) contains a total length of streams (ls) of 25,864 km within 

the Kentucky River basin, and the drainage area of the basin (A) is 18,042 km2. Using the 

equation above, the average drainage density for the entire basin is 1.434 km/km2.  

Careful consideration of the streams illustrated in Figure 22 shows that the drainage 

density in the Kentucky River basin is not uniform throughout the basin. To quantify the 

variability of drainage density across the basin, the drainage density was calculated for the area 

of each 7.5-minute quadrangle within the Kentucky River basin. The length of streams within 

each quadrangle was calculated using ArcView software and the area of each quadrangle that is 

within the basin was used as the value for A. Figure 23 shows that the drainage density varies 

systematically across the basin. Areas underlain by the Upper Ordovician Lexington Limestone 

have low drainage densities. Karst development in these areas has led to underground drainage, 

resulting in fewer surface streams. Areas in the southeastern part of the basin are underlain by 

shale-dominated Pennsylvanian coal-bearing strata, and have higher relief than the rest of the 

basin. High-density areas in the northwest end of the basin are on shaly Upper Ordovician strata, 

as is the higher density area in the south-central part of the basin. The high-density area in the 

northeastern part of the basin is on shaly strata of the Lower Mississippian Borden Formation, 

and the shaly rocks of the Lower and Middle Pennsylvanian rocks. 
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Table 3. Drainage areas of the Kentucky River and selected tributaries 

 

Stream Drainage area (km2)* Valley-km 
   

Eagle Creek 1,344 15.3 
Big Twin Creek 105 24.0 
Drennon Creek 253 28.7 
Sixmile Creek 210 40.8 
Cedar Creek 167 51.2 
Elkhorn Creek 1,295 65.0 
Benson Creek 277 81.2 
Clear Creek 169 119.7 
Dix River 1,145 152.7 
Jessamine Creek 104 167.0 
Hickman Creek 262 179.2 
Sugar Creek 108 189.8 
Paint Lick Creek 282 194.5 
Silver Creek 326 200.6 
Boone Creek 114 232.2 
Otter Creek 169 242.8 
Muddy Creek 176 253.9 
Red River 1,261 261.5 
Station Camp Creek 562 297.9 
Millers Creek 193 306.7 
Sturgeon Creek 287 341.5 

 
North Fork Kentucky River 3,416  
Middle Fork Kentucky River 1,448  
South Fork Kentucky River 1,937  
Three Forks, above confluence 6,814 350.3 

 
Kentucky River (total) 18,042  

 
From Bower and Jackson (1981)   
*: tributaries with drainage area less than 100 km2 not included  
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Stream Trends 

The Kentucky River and most of its major tributaries flow generally to the northwest 

throughout most of the drainage basin (Figure 22). A notable exception is the abrupt shift to the 

southwest of the main course of the Kentucky between Boonesboro and Camp Nelson. Another 

dramatic exception is the nearly 90-degree turn of Eagle Creek to the southwest near Glencoe. 

The Red River flows generally westward to join the Kentucky River west of Clay City. Tributary 

streams draining the Lexington-Nicholasville area flow south-southwestward to join the main 

stream. The only observed “barbed” tributaries are just upstream from Camp Nelson in the 

vicinity of Sugar Creek. Elkhorn Creek shows some sharp bends in the lower reaches.  

Abandoned Meanders 

Abandoned meanders are found only in selected stretches of the valley bottom (Figure 

24). Most of the abandoned meanders are located between valley-kilometer 22 and 87 (at 22, 37, 

53, 54, 60, 80, and 87), and are between 0.8 and 1.5 kilometers in diameter. A cluster of similar 

meanders is found along the lower reaches of Elkhorn Creek. A larger meander (> 2 km) is 

located at Carrollton. One very large meander (3.7 km in diameter) is located just west of Irvine. 

The Carrollton meander is in the Kope Formation. The Irvine meander is floored by Silurian 

strata, and has the New Albany black shale and Borden Formation in the valley walls. The other 

meanders are floored by the Lexington Limestone, and have the Kope Formation in the valley 

walls. 

Longitudinal Profile 

Figure 25 shows the longitudinal profile of the Kentucky River and major tributaries. 

Engineering and land-use impacts have caused significant modification of the thalweg of the 

stream, but even prior to settlement the stream was flowing on alluvial fill at least as far 

upstream as Beattyville. 

Bedrock Valley 

Depth-to-bedrock information along the Kentucky River valley is scarce and comes only 

from a few scattered water wells and from geotechnical information collected at the fourteen 

locks and dams built along the river. The data above Lock and Dam No. 4 at Frankfort show a 

relatively smooth profile that essentially parallels the thalweg and flood profiles, with an average  
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gradient of 0.15 m/km (Figure 26). Downstream from Lock and Dam No. 4, the profile is 

apparently more irregular; knickpoints form a series of steps and benches. Although the bedrock 

profile is quite variable, the average gradient of the bedrock in this part of the river is 0.28 m/km, 

much steeper than that upstream. Detailed data at Lock and Dam No. 3 and No. 4 suggest that 

buried knickpoints exist just downstream from each dam; the dams were apparently built on 

bedrock ledges. Lock and Dam No. 3 is built on the Grier Member of the Lexington Limestone; 

lithologic control on the development of this knickpoint is possible. Lock and Dam No. 4 is built 

near the contact of the Lexington Limestone with the Tyrone Limestone. The knickpoints and 

irregularity downstream from Dam 4 produce a generally convex shape for this part of the profile 

(Figure 26), instead of the concave “equilibrium” profile that would be expected for a trunk 

stream. The average gradient of the entire bedrock valley, from Carrollton (valley-km 0) to 

Beattyville (valley-km 350), is 0.18 m/km.  

Tributary Profiles 

Most tributary streams in the Kentucky River basin are bedrock streams with visible 

knickpoints in some profiles (Figures 27, 28, 29). In general, knickpoints may form because of 

upstream propagation of adjustments to base-level, differential erosion of bedrock in the stream 

bed, localized neotectonic offsets, and sites where coarser bedload are introduced into the stream 

(Seidl and others, 1994). The locations of the knickpoints along tributaries of the Kentucky River 

do not correspond to mapped faults, or to the mouths of tributaries which might be introducing 

coarse bedload into the stream. The knickpoints along the major tributaries (drainage area > 1000 

km2) also evidently do not correspond to mapped stratigraphic contacts, or to mapped faults 

(Figure 30). Some stratigraphic units, however, are lithologically diverse. One exception to this 

is the prominent knickpoint in the Red River approximately 105 km above the mouth (Figure 

27). This knickpoint is on the thick, massive, conglomeratic sandstones of the Lower 

Pennsylvanian Corbin Sandstone. The possibility of localized lithologic variation as a control on 

the formation of the other knickpoints is not eliminated. Eagle Creek, Elkhorn-North Elkhorn 

Creek, and Dix River each have a prominent knickpoint approximately 50 to 65 meters above the 

elevation of the confluence with the Kentucky River (Figure 27). Upstream from the knickpoints, 

each of these streams has a profile gradient of 55 to 60 m/km with steeper gradients downstream 

in each stream. 
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As one component of his study of the response of the Kentucky River to base-level 

change, Warwick (1985) surveyed 16 small tributaries of the Kentucky River. Each tributary he 

examined had a drainage area less than 2.5 km2. Although Warwick (1985) acknowledged 

lithologic control on knickpoint development, he inferred the progressive migration of a major 

knickpoint up the Kentucky River as the major controlling factor in knickpoint development in 

tributary streams. He cited progressive decrease in distance of the knickpoints from the mouths 

of the tributaries as evidence for this interpretation (Figure 31). Statistical regression of his data 

yields an R2 value of 0.47. Warwick (1985) measured knickpoint distances to the bottom of the 

knickpoint slope. This study re-evaluated Warwick’s profiles using the top of each of the 

knickpoints. In several streams, no clear knickpoint was identifiable in the profile data. 

Regression of the revised knickpoint-distance data yields an even lower R2 of 0.27 (Figure 31). 

To further test Warwick’s hypothesis, a similar analysis of the knickpoints on selected 

larger tributaries of the Kentucky River (drainage area >200 km2) was undertaken. Profiles of the 

selected tributaries were constructed from digital topographic data. Knickpoints were identified 

on the basis of the prominent changes in slopes of the longitudinal stream profiles (Figures 27, 

28, 29). The distance from the mouth of the tributary to the knickpoint and the drainage area of 

the tributary basin above the knickpoint were measured using GIS software. The results show no 

correspondence between distance from the mouth of the Kentucky River and the distance of a 

knickpoint from the mouth of the tributary (Figure 32; R2 = 0.002). On the basis of these results, 

distance upstream from the mouth of the Kentucky River is inferred to be poorly related, if at all, 

to the distribution of knickpoints along tributary streams. This refutes the conclusions of 

Warwick (1985). 

Fluvial erosion and bedrock quarrying are most effective with high flow, and drainage 

area is a useful proxy for maximum potential flows (Knighton, 1998). On the basis of this 

concept, knickpoint-distance data from the larger tributaries (drainage area > 20 km2) were 

compared to the drainage area above the knickpoint in the tributary basin. The results are plotted 

in Figure 33; regression of the data yields R2 equal to 0.8709. A similar comparison of the 

revised data from Warwick (1985) yields an R2 of 0.564 (Figure 34). These results suggest a 

strong correlation between drainage area and knickpoint migration, especially in the larger 

tributary drainage basins.  The distribution of data relative to the regression line on Figure 33 is 

also apparently related to lithology. Data points which plot higher on the graph, with larger  
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knickpoint distances, represent knickpoints developed on bedrock containing more shale than 

those plotting lower on the graph. This suggests that knickpoint migration is primarily controlled 

by the upstream drainage area of the tributary basin, and is modified by the underlying lithology. 

Flood Frequency and Magnitude 

The U.S. Army Corp of Engineers (USACoE) has calculated flood frequency graphs for 

the Kentucky River (Appendix 4), and has a database of high-water mark information for 

historical floods. This data can be used to identify the parts of the river valley within the active 

flood zone, and thus potentially susceptible to Holocene modification. The maximum recorded 

flood crests, 1937 below Lock and Dam No. 8 and 1913 above, are in general agreement with the 

0.2%-annual probability (500-year flood) flood calculated by the USACoE (Figure 35). Whether 

this prediction of flood frequency is accurate or not, the close association with historical flood-

of-record information provides a plausible estimate of the fluvially active part of the Kentucky 

River valley: those areas susceptible to inundation during the highest flows. When considered 

with the knowledge of significant land-use and engineering modifications of the valley, any 

surficial deposits within the zone of the flood-of-record are likely to be geomorphically active, 

and therefore responsive to modern controls. The deposits in this active zone are likely to be thin, 

discontinuous, and have complex relationships to older deposits. Other than archaeological data, 

no age control is available for these deposits. Therefore, a detailed chronological analysis of 

these deposits will not be included in this study. 

The stream-profile data maintained by the USACoE include profiles of the stream 

thalweg and the low-bank along the course of the stream valley. Because the low-bank profile 

dips below the modern engineered pools upstream from each dam, it is assumed that this 

represents a pre-engineering surface or a remnant/reflection of such. The generalized thalweg 

profile and the low-bank profile both have an average gradient of 0.15 m/km. The flood profiles 

have a very similar average gradient of 0.14 m/km. 

Valley Morphology 

Valley Width 

Although valley width is a basic geometric descriptor of valley morphology, it is a 

difficult and arbitrary parameter to quantify in alluviated valleys. To maintain consistency, this  
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study used the width of mapped alluvium as illustrated on USGS 1:24,000 geologic maps 

(referenced in Appendix 1); most mappers appear to have used slope-break along valley margins 

as a proxy for the boundaries of alluvial deposits. The measurement of the width of mapped 

alluvium used here (Figure 36) is a measure of valley width at the level of current alluvial fill. 

Valley profiles buried beneath the fill are not readily available, and other measurements above 

the level of the fill would be arbitrary and potentially inconsistent. 

Figure 37 shows the width of mapped alluvium along the Kentucky River in the study 

area. The widths are variable in detail, but general patterns emerge along the length of the 

stream. Seven general zones of width-pattern can be readily differentiated (Figure 37). In the 

lower 33 km of the river valley (zone W1), the alluvium is broad, averaging more than 1500 m in 

width. The sharp valley-width decrease at 10 to 20 km is related to terrace/fan development at 

the mouth of a tributary valley. In zone W2, the width of alluvial deposits averages about 525 m, 

but is variable and decreases gradually upstream. In zone W3, the valley and mapped alluvium 

are quite narrow, averaging only 185 meters wide and decreasing gradually upstream as in area 

W2. In zone W4, the width averages 240 meters, but varies in a somewhat cyclic pattern in 

which amplitudes gradually decrease upstream. In zone W5 the width is greater, and is generally 

more consistent than in zone W4; the alluvial fill averages 380 meters wide. Zone W6 has a 

much greater valley width, averaging 700 meters wide, but locally is more than 1 km wide. In 

zone W7, the alluvial fill is much narrower and less internally variable, averaging only 200 

meters wide. 

Sinuosity 

The main stem Kentucky River is a meandering stream along the entire course through 

the study area. Although the river trend is generally linear, the valley meanders along the linear 

trend, and the river meanders with the valley, to varying degrees (Figure 38). Two methods can 

be employed to illustrate or quantify the meandering of the river within the valley. One is to 

measure the excess river distance by subtracting the cumulative river distance from cumulative 

valley distance (Figure 38). When river distance is plotted against valley distance (Figure 39), 

flatter sections on the graph indicate areas where the valley meanders coincide with river 

meanders closely following the bends of a narrow valley. Steeper segments on the graph indicate 

those stretches of the river where the stream meanders more broadly within the river valley, and  



Figure 36. Map illustrating method for measured alluviated valley width. 
Black lines show locations of measurements at 1-km intervals along the valley. 
Colors indicate different geologic units: yellow, alluvium; blue, Lexington 
Limestone; pink, Kope Formation; orange, Upper Ordovician rocks.
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Figure 38. Map illustrating variation in valley distance (purple line) and river 
distance (blue line). Colors indicate different geologic units: yellow, alluvium; 
brown, New Albany Shale; light green, Borden Formation; dark green, Slade 
Formation; gray, Pennsylvanian rocks.
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thus river distance increases more dramatically with valley distance. Valley width and sinuosity 

are related in that higher sinuosity requires a wider valley. The patterns which emerge from each 

of these methods can be separated into zones of particular behavior. 

Seven general zones of sinuosity pattern can be differentiated on Figure 39. In zone M1, 

the distances diverge almost linearly. In zone M2, the divergence is greater but more variable. A 

more linear trend characterizes zone M3. In zone M4, the two distances diverge much more 

gradually; river meanders closely follow valley meanders in a narrow valley. In zone M5, the 

two distances also diverge only gradually. In zone M6, the values diverge markedly; the river 

valley meanders in a moderately wide valley. Zone M7 shows minimal divergence between the 

river and valley distances; river meanders closely follow valley meanders in this narrow stretch 

of the valley.  

Another, and more traditional, method to quantify the sinuosity of the river within the 

valley is to examine the local ratio of river distance to valley distance for limited stretches of the 

river (Figure 40). This is a different visualization of sinuosity, so comparable zones can be 

delineated using this technique. Figure 40 compares the sinuosity ratio to the sinuosity zones 

identified using the excess-river-length method shown in Figure 39. Zones M1 and M3 have 

comparable values of sinuosity ratio. Zone M2 includes the highest sinuosity ratio values in the 

study area, with values greater than 2.0. Zone M4 includes very low values approaching 1.0. The 

ratio values in zone M5 are somewhat variable, but show a pattern distinct and intermediate 

between the low values of zone M4 and the higher values of zone M6. Zone M7 has low 

sinuosity ratios comparable to zone M4. 

Valley Morphology Styles  

Considered together, valley width and sinuosity can be used to identify eight different 

valley-morphology styles along the course of the main stem Kentucky River (Figure 41). These 

valley styles are also apparent in a map view of the basin (Figure 42). Names for the valley styles 

are derived from 7.5-minute quadrangles in which the river typifies the parameters that 

distinguish the style. The importance of fluvial versus colluvial processes in slope development 

and maintenance varies between morphology styles, and is a direct result of different lithologies 

in the valley walls.  
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A relatively wide valley with steep and symmetrical valley walls characterizes the 

Worthville style (Figures 43, 44a). Although the river meanders within the broad valley, 

individual reaches of the river are predominantly linear. Shale and limestone of the Kope 

Formation dominate the valley walls and offer little resistance to lateral or vertical erosion. The 

symmetrical slopes of the valley walls reflect the colluvial processes dominating the maintenance 

of those slopes; the river “cleans” colluvial material from footslopes and allows the colluvial 

processes to dominate. Abandoned meanders are present, but bedrock benches and valley-side 

terraces are rare, as they are easily undermined and removed by colluvial processes. 

Moderate valley widths and more curvilinear river reaches characterize the Gratz style 

(Figure 44b, 45). This valley style is distinguished from the Worthville style by narrower valley 

widths and higher sinuosity ratio. Valley walls in the Gratz style are steep along cut-bank slopes 

of the valley, but less steep on slip-off slopes and on bedrock benches near the valley bottom. 

The upper slopes are underlain by shales and limestones of the Kope Formation, whereas the 

lower slopes are eroded into the thin-bedded limestones of the Lexington Limestone. The 

Lexington Limestone is more resistant to erosion than the Kope. Bedrock benches are typically 

preserved on the Lexington Limestone, reflecting slower colluvial slope degradation in the more 

resistant limestone, enabling preservation of the benches. Abandoned meanders are more 

common in the Gratz style than in the Worthville style. 

The Tyrone style has much narrower valleys than the Worthville or Gratz styles, with 

asymmetric valley walls in meanders, and symmetric valley walls in the intervening straight 

reaches (Figure 46, 47a). The Tyrone style is distinguished form the Gratz style on the basis of 

narrower valley widths, lower sinuosity ratios, and a slight change in the excess-length measure 

of sinuosity. The insides of meanders in the Tyrone style exhibit well-developed slip-off slopes. 

Stream reaches are somewhat curvilinear as in the Gratz style. The Lexington Limestone and 

Tyrone Limestone dominate the valley stratigraphy. These units are relatively resistant to 

erosion, and colluvial processes are relatively slow. The landforms are primarily sculpted by 

fluvial erosion, and only minimally modified by colluvial processes. 

The lower valley walls in the Wilmore style are symmetrical, whereas the upper valley 

walls are similar to that of the Tyrone style (Figure 47b, 48). The Wilmore style is differentiated 

form the Tyrone style by very low sinuosity ratios and low excess-length sinuosity. The lower  



Figure 43. Topographic map from the Worthville 7.5-minute quadrangle, 
showing the Worthville style of river sinuosity and valley morphology. Red 
arrow shows the location and direction of view in Figure 44a.
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A

B

Figure 44. Photographs of valley morphology styles downstream from Frankfort. A: 
View across Kentucky River valley near Worthville. Location shown on Figure 43. 
Kentucky River flows left to right in the tree line behind the barns in the distance. B: 
View of the Gratz morphology style in Clements Bottom. Location shown on Figure 
45.
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Figure 45. Topographic map from the Gratz 7.5-minute quadrangle, showing 
the Gratz style of river sinuosity and valley morphology. Red arrow shows the 
location and direction of view in Figure 44b.
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Figure 46. Topographic map from the Tyrone 7.5-minute quadrangle, showing 
the Tyrone style of river sinuosity and valley morphology. Red arrow shows 
the location and direction of view in Figure 47a.
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A

B

Figure 47. Photographs of valley morphology styles upstream from Frankfort. A: 
View along Kentucky River valley near Tyrone. Location shown on Figure 46. B: 
View of the Wilmore morphology style from the US 68 bridge (“Brooklyn Bridge”) 
over the Kentucky River (photo by Brandon Nuttall).
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Figure 48. Topographic map from the Wilmore 7.5-minute quadrangle, 
showing the Wilmore style of river sinuosity and valley morphology. 
Photograph in Figure 47b was taken west of this map area.
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valley is very narrow, and is eroded into the massive Camp Nelson Limestone, which is very 

resistant to both lateral and vertical erosion. The upper valley walls are in the Tyrone Limestone 

and lower Lexington Limestone, and closely resemble the morphology of the Tyrone style. 

Stream reaches are curvilinear, similar to the Tyrone style. 

The Palmer style (Figure 49) is similar in valley width and morphology to the Gratz style 

(Figure 45). The valley is wider than the Wilmore and Tyrone styles, and is comparable to the 

Gratz style. The valley is asymmetric with bedrock benches and less steep slopes on slip-off 

slopes. Sinuosity is comparable to the Tyrone style. Colluvial processes maintain the steep 

slopes. The bedrock is comprised of Upper Ordovician and Silurian carbonates and shales, which 

vary widely in resistance to erosion. Bedrock benches are typically formed on resistant rocks. 

Stream reaches are linear, as in the Worthville style.  

The Valley View style (Figure 50) is an alternating combination of the Wilmore and 

Palmer valley styles, where the river crosses and recrosses the Kentucky River fault zone into 

different lithologies. The Valley View style has widths and sinuosity intermediate between the 

Wilmore and Palmer styles. 

A wide symmetrical valley characterizes the Irvine style (Figure 51). The Irvine style is 

distinguished by a wide valley compared to adjacent styles. The valley walls are dominated by 

the Borden Formation, and undermining of overlying lithologies by erosion of the weak Nancy 

Member of the Borden leads to colluvial processes dominating the steep valley slopes. Stream 

reaches are linear, but shorter than in the otherwise similar Worthville style.  

A narrow symmetric valley characterizes the Heidelburg style (Figure 52). The 

Heidelburg style has comparable width and sinuosity to the Wilmore style. The valley walls in 

the Heidelburg style are underlain by massive siltstones of the Cowbell Member of the Borden 

Formation, which is less susceptible to erosion than the underlying Nancy Member.  

Fluvial Deposits and Associated Features 

Glacial Deposits and Erratics 

Although previous workers had recognized glacial deposits in northern Kentucky, the 

USGS-KGS geologic mapping program provided the most thorough description and delineation 

of the deposits. The following description is largely summarized from USGS geologic- 



Figure 49. Topographic map from the Palmer 7.5-minute quadrangle, showing 
the Palmer style of river sinuosity and valley morphology.
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Figure 50. Topographic map from the Valley View 7.5-minute quadrangle, 
showing the Valley View style of river sinuosity and valley morphology.
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Figure 51. Topographic map from the Irvine 7.5-minute quadrangle, showing 
the Irvine style of river sinuosity and valley morphology.
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Figure 52. Topographic map from the Heidelburg 7.5-minute quadrangle, 
showing the Heidelburg style of river sinuosity and valley morphology.
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quadrangle maps. Figure 53 illustrates a stratigraphic column of the glacial deposits and related 

strata mapped in northern Kentucky, and Figure 54 shows the distribution of those deposits. Two 

different units of glacial till/drift have been mapped in northern Kentucky. Both are composed of 

silty clay, and contain pebbles, cobbles, and boulders of limestone, quartz, chert, and igneous and 

metamorphic rocks. One drift unit is found only on uplands, and generally no lower than 665 to 

670 ft in elevation. It is deeply weathered, and contains limonite pellets. This drift unit (“pre-

Illinoisan drift” on Figure 54) overlies Old Kentucky River fluvial deposits in the paleovalleys 

between Carrollton and Cincinnati (Swadley, 1971) and is commonly separated from the fluvial 

sediment by a lacustrine fill dominated by laminated calcareous clay (Swadley, 1971; Ettensohn, 

1974). The other drift unit (“Illinoisan drift” on Figure 54) is typically found below 650 ft, but 

locally as high as 720 ft in elevation. It is more sandy, less leached, and is locally cemented by 

calcite. This less-leached drift is stratigraphically superimposed on the more deeply weathered 

drift in the valley of Fourmile Creek in the Vevay North and South geologic quadrangle map. 

The less leached drift has been assumed to be of Illinoisan age, and the more deeply weathered is 

thus pre-Illinoisan. In the Kentucky River basin, these drift deposits are confined to the area 

northwest of Eagle Creek. 

Presumed glacial erratics of exotic non-sedimentary lithologies are found across northern 

and northeastern Kentucky, south of the mapped glacial limit (Figure 55) (Ray, 1969). Boulders 

of igneous and metamorphic rocks were found at elevations as high as 850 ft in the headwaters 

of the Licking River basin (Leverett, 1929). They are found as high as 985 ft in Lewis County. 

Two of these boulders, the Epworth and Farmers boulders, were studied by Jillson (1924a, 

1924b, 1925). Various authors have speculated about their origin (Ray, 1969), but most regional 

glacial histories only treat them in passing (e.g., Goldthwait and others, 1981). Leverett (1929) 

inferred that these erratics were rafted to their locations and deposited during times of glacial 

impoundment of the area stream valleys. 

Wisconsin glaciers did not reach Kentucky, but Wisconsin outwash is found along the 

Ohio River valley. The outwash is composed of crossbedded gravel, sand, and silty clay. The 

gravel includes well-rounded pebbles and cobbles of limestone, siltstone, quartz, chert, granite, 

schist, gniess, coal, and fine-grained igneous and metamorphic rocks. Total thickness of the 

outwash is as much as 140 ft. The upper 5 to 25 ft of the deposits is dominantly sandy. The  
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Figure 53. Stratigraphic column of glacial deposits and related stratigraphy in 
northern Kentucky. Modified from Sparks and others (2002). 
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highest elevation of the Ohio River outwash terrace is approximately 500 ft in the area around 

Carrollton.  

Valley-Bottom Fluvial Deposits 

The valley fill of the Kentucky River valley consists of silty clay, clayey silt, and fine 

sand. The valley-fill materials contain scattered lenses of gravel, including pebbles and cobbles 

of chert, quartz, and coal, geodes, and slabs of limestone, siltstone, and sandstone. Some terraces 

exhibit cut-and-fill structures. Prior to construction of the lock-and-dam system, deposition of 

coarse gravel bars at the mouths of many tributary streams had caused shallow riffles along the 

Kentucky River, which were hazardous to navigation. Limited concentrations of degraded 

woody debris and organic matter can be found locally in the floodplain sediment. The valley fill 

ranges to a maximum of 83 feet (25 m) in thickness near Carrollton, but is generally significantly 

thinner upstream (Figure 56). 

Two different materials of inferred glacial origin are associated with the valley-bottom 

fluvial deposits. A prominent series of Wisconsin outwash terraces along the Ohio River valley 

is underlain by a thick succession of gravel and sand (Figure 57a). The tops of these terraces 

have elevations as high as 152 m (500 ft) near Carrollton (Figure 56). Ice-deposited sediment of 

Wisconsin age has not been identified in Kentucky. A ridge of till inferred to be Illinoisan age 

(elevation 182 m (595 ft)) separates the Kentucky River valley from the Ohio River valley 

northeast of Carrollton. Glacial drift of inferred Illinoisan age has been mapped nearby at 

elevations as high as 215 m (700 ft) (Figure 56). This Illinoisan till/drift is less leached than 

older, pre-Illinoisan drift and till, and overlaps the older drift just north of Carrollton. Illinoisan 

outwash may be present along the sides and margins of the Ohio River valley, but is 

lithologically indistinguishable from the younger Wisconsin deposits. Thick layers of stiff, 

laminated to massive, blue-gray silty clay (“blue clay”) comprise much of the valley-fill material 

in the Kentucky River valley below Lock and Dam No 2, as documented by core logs obtained 

from the USACE and the USGS (Figure 44). Published geologic maps and reports (Appendix 1; 

Kane, 1972; Ryder, 1975; Johnson and Parrish, 1999) have mapped similar deposits in this part 

of the Kentucky River valley and in smaller tributaries of the Ohio River.  

Although the valley-bottom deposits covering the bedrock valley are potentially subject 

to recent land-use-driven modification, some elements of the valley fill are probably remnants or  
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A

B

Figure 57. Photograph of valley-bottom terraces. A: Margin of gravel pit in 
Wisconsin outwash terrace, in Mexico Bottom, Indiana. Dashed line represents 
contact between sandy floodplain deposits and underlying gravel-dominated 
outwash deposits. B: View of terraces along Pond Creek between Gratz and 
Monterey. The arrow indicates the top of the terrace accordant with the 
Wisconsin outwash deposits downstream.
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relicts of pre-settlement landforms. These can be identified as those standing above the 

geomorphically active flood zone, or as those buried below the active thalweg of the stream 

(Figure 58). As far upstream as Lock and Dam No. 3, elevations of terraces (~490 to 500 ft; 149 

to 152 m) are accordant with Wisconsin glacial outwash terraces in the Ohio River valley (Figure 

57b). Other terraces farther upstream are below the elevation of the highest mapped Illinoisan 

drift, and may represent similar terraces related to Illinoisan impoundment. Detailed stratigraphic 

data from these terraces was not available for this study. Other surficial terrace and “floodplain” 

levels are within the active flood zone, and are most likely modified to some degree by the land-

use and engineering effects of the last two centuries (Figure 58). The thick layers of blue clay 

mapped in the Kentucky River valley below Lock and Dam No. 3, and in other smaller 

tributaries of the Ohio River, probably represent glacial impoundment during Wisconsin glacial 

outwash events along the Ohio River. 

High-Level Fluvial Deposits 

Descriptions of the high-level terrace and paleovalley deposits can be found in Campbell 

(1898), Foerste (1906), Jillson (1943b, 1944a, 1944b, 1945a, 1945b, 1946a, 1946b, 1946c, 

1946d, 1947, 1948a, 1948b, 1950), and on the geologic-quadrangle maps referenced in Appendix 

1. These descriptions have been supplemented by field work in the current study (Figure 17). 

The high-level fluvial deposits contain clayey silt, sandy silty clay, and sand, and are generally 

deeply weathered. The deposits are characterized in the field by the presence of diagnostic well-

rounded pebbles of quartz and chert, as well as broken or eroded quartz geodes as much as 1 foot 

(30 cm) in diameter (Figure 59a). The geodes are found only downstream of Irvine. Slabs of 

sandstone as much as 2 ft (60 cm) in diameter are found in many of the deposits in the study area 

(Figure 59b). Gravel is found throughout the deposits, but typically is most abundant at the base 

of each deposit. The deposits are locally limonite cemented, and contain sparse to common 

limonite pellets. The deposits range from thin veneers on surfaces and benches to more than 50 

feet (16 m) thick in less-eroded parts of paleovalleys.  

Irvine Formation 

Campbell (1898) described and formally named the Irvine Formation. The Irvine 

Formation includes unconsolidated sand, gravel, and clay on upland terraces and broad hilltops 

in the vicinity of Irvine (Figures 60, 61a). He inferred a fluvial origin for the deposits and  
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A

B

Figure 59. Photographs of diagnostic high-level fluvial sediments. A: Typical 
high-level fluvial gravel including chert and quartz  pebbles and geodes in a sandy 
matrix near Camp Nelson. B: Sandstone slab found in fluvial deposit with chert
and quartz pebbles near US 127 on the Franklin-Anderson County line.
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Figure 61. Photographs of high-level fluvial deposits. A: Irvine Formation sand 
exposed in a borrow pit at Rice Station in Estill County. B: High-level fluvial sand, 
silt, and clay exposed in a construction site in Stringtown, near Lawrenceburg, 
Kentucky.
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tentatively assigned a Late Tertiary age for the Irvine deposits on the basis of geomorphic 

position. Foerste (1906) expanded the description of the Irvine deposits, identifying additional 

exposures of the sand, gravel, and clay in the Clark, Madison, Estill County area. Subsequent 

workers have correlated other high-level fluvial deposits downstream (Figure 61b) with the 

Irvine (e.g., McFarlan, 1943, Granger and Smith, 2000), but no formal extensions of the Irvine 

Formation have been made beyond the type area. The KGS-USGS geologic mapping project 

restricted the formal Irvine Formation to the area shown in Figure 60. 

Paleovalleys and High-Level Abandoned Meanders 

The fluvial deposits are associated with high-level arcuate abandoned meanders and 

paleovalleys, or are in isolated bodies on benches and terraces. The high-level abandoned 

meanders and paleovalleys are within 9 km of the modern stream valley, and typically within 6 

km (Figure 62). Many of the high-level abandoned meanders are larger in diameter than the 

present valley-bottom counterparts, and are mostly distributed along the stretch of the Kentucky 

River from the mouth of the Dix River almost to Carrollton. Other high-level abandoned 

meanders are in four isolated locations between Camp Nelson and the mouth of the Red River 

(Figure 62).  

Valley widths, as mentioned previously, can be a difficult and arbitrary parameter to 

quantify in alluviated valleys. The width of high-level abandoned meanders was estimated by 

identifying paleovalleys with relatively intact valley walls which contained fluvial deposits 

spanning the valley width. The width of the fluvial deposits was measured perpendicular to the 

valley axis. The values obtained in this way are only estimates, because the fluvial deposits and 

valley walls potentially have been subjected to erosion and modification. The Old Kentucky 

River paleochannels northeast of Carrollton range from 1000 to 1400 m wide. A paleochannel 

between Tyrone and Salvisa is 660 to 750 m wide. The Warwick Abandoned Channel of Jillson 

(1947) is 870 to 1030 m wide. The Hickman Abandoned Channel of Jillson (1948a) is 900 to 100 

m wide. The paleochannels mapped in the Winchester quadrangle (Appendix 1) range from 570 

to 890 m wide. 

Linear Paleochannels 

Near Lawrenceburg in Anderson County and Levee in Montgomery County, linear 

paleochannel systems are oriented nearly perpendicular to the main valley (Figure 62). These  
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paleovalleys extend from the main valley of the Kentucky River or from high-level abandoned 

meanders to the divide of the Kentucky River drainage basin. This study has confirmed the 

observation of previous workers (e.g., Leverett, 1929) that the channels have local veneers and 

deposits of quartz pebbles and sand. Each paleochannel has a distinct topographic expression as 

a stream valley, but contains no modern stream readily apparent for development of the valley. 

The Lawrenceburg and Levee paleochannels correspond to the lowest point along the divide 

between the respective drainage basins. 

The Lawrenceburg paleochannels extend across the modern divide between the upper 

Salt River valley and the Benson Creek watershed in the main Kentucky River valley (Figure 

63). The cols along the divide in each of the Lawrenceburg paleochannels have elevations 

ranging from 242 m (795 ft) to 248 m (815 ft). Leverett (1929) and workers from the KGS-

USGS mapping program noted fluvial sediment along the divide between the Kentucky River 

and the upper Salt River, which was confirmed by field work during this study (Figure 17). 

The Levee paleochannel trends to the southwest from the Licking River divide (elevation 

270 m (890 ft)) (Figure 64, 65). The lower end of the paleochannel is a hanging valley above the 

Kentucky River near Upper Howards Creek at an elevation of 240 m (790 ft). Another 

paleochannel trends south-southeast from the main paleochannel toward the Red River near Clay 

City, and ends as a hanging valley at an elevation of 228 m (750 ft). Both segments of the Levee 

paleochannel are incised below the elevation of nearby Irvine Formation deposits, which have 

minimum elevations of 255 m (835 ft). With the exception of the lower paleovalley near the Red 

River, few fluvial deposits were mapped in this paleochannel system by the KGS-USGS 

geologic mapping program. Geologic mapping on the Levee and Hedges quadrangles (Appendix 

1) noted the presence of sand and quartz pebbles in the paleochannel, but did not delineate the 

deposits. Field work conducted during the course of this study confirms the presence of rounded 

quartz and chert pebbles in the paleochannel from the Licking River divide to the community of 

West Bend (black dots on Figure 64). 

The Lawrenceburg and Levee paleochannel systems are interpreted here to be spillways 

between adjacent basins. This interpretation is made on the basis of the geomorphic expression 

as paleovalleys, the coincidence with low cols along drainage divides, and the existence of 

fluvial sediment near the drainage divides. The Levee and Lawrenceburg spillways would have  







A

B

Figure 65. Photographs of Levee paleochannel. A: View along paleochannel from 
near col, looking southwest over community of Levee. Flow was away from the 
viewer. B: View from divergence of upper and lower outlets, looking northeast. 
Flow was toward the viewer, and diverged right (lower outlet) and left (upper outlet) 
past the viewer. Arrow in each photo indicates the same upland, viewed from 
opposite directions.
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been active only during times of glacial impoundment of the Licking River basin and Kentucky 

River basin, respectively. The Levee spillway is here inferred to have released impounded water 

from the Licking River valley into the Kentucky River valley. The Lawrenceburg spillways are 

inferred to have released impounded water from the Kentucky River valley into the lower Salt 

River valley. 

Bedrock Benches 

Numerous bedrock benches or terraces/straths are identifiable from topographic maps of 

the river valley. Many of these are similar in topographic expression to terraces with mapped 

fluvial deposits (Figure 66). In several places, however, the fluvial deposits are present as a thin 

veneer or were overlooked by geologic mappers. Whereas the number of benches identified from 

topographic maps in the Kentucky River valley is quite large, comprehensive field checking was 

impractical for this study. Only a small sample of bedrock benches was examined in the field; 

the presence of quartz and chert gravel was confirmed at each of these sites (Figure 17). 

Profile of Fluvial Deposits and Features 

The distribution of the Irvine Formation, other high-level fluvial deposits, paleochannels, 

the outlets of inferred spillways, and bedrock benches is shown in the longitudinal profile on 

Figure 67. In general, the fluvial deposits and paleochannels are found only at elevations of 200 

m (650 ft) or higher in the Kentucky River basin. The “floor” of the main trend of fluvial 

deposits and paleochannels is graded upstream with a slope very similar to that of the modern 

stream. The deposits generally grade from the Old Kentucky River paleochannels near Carrollton 

(valley-km 10, elevation 200 m) (Swadley, 1971) up to the upper Levee spillway outlet mapped 

in Clark County (elevation 240 m). Local exceptions are in three isolated areas of the valley 

(valley-kilometers 50 to 140, 180 to 200, and 250 to 300) where bedrock benches and fluvial 

deposits are found below this grade. Above this grade, no distinct or discrete profiles are evident 

in the data (Figures 67 and 68). 

Both ends of the “floor” of fluvial features have associations with a glacial event, 

discussed earlier in this chapter. Swadley (1971) mapped lacustrine sediment and southbound 

outwash deposits over the northbound Old Kentucky River deposits near Carrollton. Swadley 

(1971) inferred the sedimentary succession to represent a reversal of flow in the Old Kentucky 

River caused by disruption of Teays River drainage downstream by a pre-Illinoisan glacial  
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advance. The Levee spillway is inferred by this study to represent an outlet of water overflowing 

from the Licking River basin during times of glacial impoundment. The coincidence of these two 

glacial interpretations at opposite ends of the “floor” suggests that the two sites represent the 

effects of a single glaciation on different ends of the Kentucky River valley. The “floor” 

therefore would represent the final position of the Old Kentucky River prior to disruption of the 

system by destruction of the Teays River system and integration of the Ohio River system by a 

pre-Illinoisan glacial advance. 

Fluvial Deposits and Bedrock Stratigraphy 

The valley-morphology styles identified and discussed earlier in this chapter correspond 

to the bedrock stratigraphy exposed in the valley walls. The Wilmore style corresponds with the 

Camp Nelson Limestone. The Tyrone style corresponds with all but the top few meters of the 

Tyrone Limestone. The Gratz style corresponds to the upper Tyrone Limestone and the 

Lexington Limestone. The Worthville style corresponds generally to the Kope and Clays Ferry 

Formations. The Palmer style corresponds to Upper Ordovician units above the Kope/Clays 

Ferry Formations, overlying Silurian units, and the Devonian Boyle Dolomite. The Irvine style 

mainly corresponds to the Nancy Member of the Borden Formation, which is dominated by clay 

shale. The Heidelburg style corresponds to the resistant beds of the Cowbell Member of the 

Borden Formation, the Slade Formation, and the Pennsylvanian Corbin Sandstone. 

The bedrock lithologies constrain the colluvial processes, as well as the fluvial erosion 

rates and thresholds, and thus control the development of landforms and valley morphology. If 

bedrock lithology is a dominant control on valley morphology, the distribution of high-level 

fluvial deposits and features should be analogous to the corresponding valley-bottom 

morphology styles suggested by the enclosing bedrock stratigraphy. To test this hypothesis, this 

study compares selected high-level fluvial deposits and paleovalleys to the associated present-

day valley-bottom morphology style, on the basis of bedrock stratigraphy. The valley 

morphology styles discussed above correspond to major stratigraphic units (Figures 36, 38). 

Figure 69 shows the projection of the potential valley morphology styles in the Kentucky River 

valley, on the basis of bedrock stratigraphy shown in Figure 6. 

The paleovalley of the Old Kentucky River northeast of Carrollton (Swadley, 1971) is 

eroded into Upper Ordovician stratigraphic units of limestone and limestone and shale (Figure  
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70).  Multiple paleovalleys eroded into Upper Ordovician rocks were mapped in the Winchester 

quadrangle (Appendix 1). The valley-bottom morphology style associated with these lithologies 

is the Palmer style. The Old Kentucky River paleovalleys are 650 to 800 m wide, and have a 

rounded meander valley pattern.  The Old Kentucky River paleovalley walls are asymmetric in 

meander bends. The elevation of high-level fluvial deposits on the inside of meander bends is 

consistent with slip-off slopes. The Winchester paleovalleys are arcuate and range from 650 to 

850 m wide. The higher levels of fluvial deposits in the Winchester paleovalleys are located on 

the inside of meander bends, which is consistent with slip-off slopes. The characteristics of both 

sets of paleovalley examples are consistent with the modern valley morphology of the Palmer 

style (Figure 70). 

A series of paleovalleys between Tyrone and High Bridge is eroded into the Lexington 

Limestone. The bedrock stratigraphy corresponds to the Gratz morphology style.  The 

paleovalleys range from 650 to 1000 m wide, which is consistent with the Gratz style. One 

paleovalley is subparallel to the main valley, whereas the others in this area are arcuate. In the 

Gratz style, the valley-bottom abandoned meanders are arcuate and comparable in size to the 

High Bridge-area paleovalleys, and the Pond-Cedar Creek valley has a cutoff to the main valley 

that is similar to the subparallel paleovalley near Lawrenceburg (Figure 71).  

The Irvine Formation includes broad deposits of sand, gravel, and clay as much as 2300 

m wide preserved on uplands; no distinct paleovalleys are preserved. The deposits primarily rest 

on New Albany Shale; the Nancy Member of the Borden Formation would thus have comprised 

the valley walls for these deposits. The corresponding present-day valley-bottom morphology 

analog is the Irvine style. The valley-bottom fluvial deposits in the Irvine style are similarly 

broad in the present Kentucky River valley, with valley widths as much as 1100 m. In a similar 

bedrock setting in the Red River, the alluviated valley ranges to 1700 m wide (Figure 72). The 

basal elevation of Irvine Formation deposits is lower to the east, as is the lower contact of the 

Nancy Member of the Borden Formation. Although no distinct paleovalley is available for 

comparison, the distribution of the Irvine Formation deposits in relation to the underlying 

bedrock stratigraphy is consistent with lithologic control on a paleovalley. 

The stratigraphic projection of valley morphology styles into the upland can also help to 

explain the entrenched meander patterns of the Tyrone and Wilmore styles (Figure 73). The  
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bedrock lithologies of both styles are relatively resistant to lateral erosion, and should resist the 

development of meandering stream courses. The Gratz pattern, however, is characterized by 

well-rounded, and well-developed meanders (Figure 73). Well-developed meanders in the Gratz 

valley morphology style that eroded into the underlying Tyrone style would have been “locked” 

into place by the lateral resistance of the Tyrone, and further constrained by the more-resistant 

underlying Wilmore style. The meanders preserved in the Tyrone and Wilmore styles are 

inherited from overlying, preceding landscapes which were controlled by their enclosing 

stratigraphy, and the modern valleys in those styles are dominated by vertical erosion, and 

limited lateral erosion. 

The morphology and distribution of preserved upland fluvial deposits and features is 

similar to those in comparable stratigraphic settings in the modern river valley. This reinforces 

the concept that the development of landforms and valley morphology is controlled by the 

lithology of the bedrock units. The consistency of valley-bottom morphology with the 

distribution of high-level deposits and paleovalleys suggests that lithology has been the dominant 

control on landform morphology through the time period represented by the observed deposits. 

Supra-upland Deposits 

Jillson (1963) identified potential fluvial deposits well away from the modern and upland 

deposits of the Kentucky River. At a series of sites trending generally northwest from 

Boonesboro toward Monterey (Figure 74), Jillson found quartz pebbles that he inferred as 

demonstrating an eastern Kentucky provenance for the deposits. At four sites, he also identified 

granite cobbles and pebbles (Figure 74). As shown in Jillson’s (1963) frontispiece photograph, 

these granite cobbles appear to be relatively unweathered, water-modified, faceted pebbles; he 

reports them to be 2.5 to 3.5 inches (6 to 9 cm) in diameter. Jillson offered these pebbles as 

evidence of a through-flowing, very ancient (“Mesozoic”), paleo-Kentucky River with 

headwaters in the Blue Ridge Mountains of southern Virginia or northwestern North Carolina, 

along the modern trend of the modern Wautauga River and North Fork of the Kentucky River. 

The relatively fresh nature of Jillson’s central Kentucky granite pebbles argues against a very-old 

depositional age, because survival of intact granite cobbles at the surface in Kentucky since the 

Mesozoic seems improbable but is possible. A search of the bibliographic database GeoRef did  
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not produce any sources documenting the weathering rate of granite in a temperate humid 

climate that could resolve this issue.  

Adjacent Streams 

Licking River 

Master streams in the Licking River basin generally trend to the northwest (Figure 75). 

Luft (1980, 1986) summarized the most recent geologic mapping in the Licking River valley. He 

identified a lacustrine-over-fluvial sedimentary pattern similar to that described by Swadley 

(1971) for the Old Kentucky River. A fluvial deposit mantles a bedrock strath at roughly 190 m 

(620 feet) and is graded northward into Ohio. This strath joins the Old Kentucky River strath 

north of Cincinnati, and Luft correlated it with the Teays age Parker Strath. This strath and 

associated fluvial deposits are covered by Illinoisan drift in southern Ohio. In Kentucky, the 

fluvial deposit is overlain by a clay-dominated lacustrine unit named the Claryville Clay. Two 

other units are mapped above the Claryville: one is a gravel lag at approximately 250 m (820 ft), 

and the other is a lacustrine-type clay beneath sand and gravel at some sites at 240 to 270 m (785 

to 885 ft) in Campbell County, Kentucky. Below the Parker Strath, Luft (1980) identified 

scattered deposits mantling valley walls and meander cores and referred them to Illinoisan 

outwash blocking the Licking River valley. A set of high terraces grades to the Wisconsin 

outwash in the Ohio River valley, and lower terraces are within the modern flood zone. Luft 

(1986) considered the composition of gravel in “Teays age” and older fluvial deposits along the 

South Fork of the Licking River, and observed that they included lithologies not present in 

bedrock of the South Fork valley, such as quartz and geodes. He hypothesized that the ancient 

Kentucky River originally flowed along the trend of the South Fork of the Licking River.  

Salt River 

The Salt River, west of the Kentucky River basin, has a series of north-northwest flowing 

tributaries, feeding into a westward-flowing master stream (Figure 75). The upper Salt River 

makes a sharp bend from the north-northwest to a more westerly trend near Lawrenceburg, 

Kentucky, and passes between relatively high north-trending ridges (Figure 76). Tributary 

streams flanking the high ridge are distinctly barbed, trending opposite the flow direction of the 

main stream. The upper Salt River drainage basin is the only component of the Salt River  
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drainage basin that is east of the relatively high north-northwest trending ridge. North of the 

sharp bend of the Salt River, a paleovalley can be traced into the Benson Creek watershed and 

high-level abandoned meanders of the Kentucky River. Fluvial sediments have been mapped 

along the divide between the two streams. Leverett (1929) and Jillson (1943) interpreted these 

data as evidence of a capture of an old tributary of the Kentucky River by headwaters of the 

ancient Salt River. The lower Salt River has a distinctly anastomosing pattern for approximately 

5 km downstream of the high dividing ridge, in contrast to a meandering channel pattern 

elsewhere along the course of the upper and lower Salt River. The upper Salt River was most 

likely a tributary of the Kentucky River prior to capture by the lower Salt River. The modern 

upper Salt River has a drainage area of roughly 445 km2. 

Recent KGS dye-trace experiments have indicated that the upper Salt River is losing flow 

through a karst conduit system to Crawford Spring along the Chaplain River (Figure 77, 78) (R. 

Paylor, personal communication, 2003). The karst flow passes under the intervening surface 

drainage of Quirks Run, which also loses flow to the karst system (Currens and others, 2003). 

The conduit system decreases approximately 23 m (75 ft) in elevation over a straight-line 

distance of 7.8 km, which yields a maximum gradient of 3.0 m/km. This is identical to the dip of 

bedrock across this same area as shown on the geologic quadrangle maps (Appendix 1). The 

conduit flow in the Crawford Spring groundwater basin passes under the high dividing ridge 

separating the upper Salt River drainage basin and the Rolling Fork drainage basin to the west 

(Figure 77). The Salt River swallets and Crawford Spring are in the lowest tongue of the 

Tanglewood Member of the Lexington Limestone, between the Grier and Brannon Members. 

The site of the inferred upper Salt River capture is in a similar stratigraphic position as the 

Crawford Spring groundwater basin. A tongue of the Tanglewood Member of the Lexington 

Limestone is exposed below Clays Ferry Formation, and the bedrock dips to the west at 2.25 

m/km. The distance from the northbound upper Salt River to the west side of the high dividing 

ridge is roughly 10.8 km, compared to the 7.8-km distance of the modern Crawford Spring 

conduit system. 

It is possible that a karst conduit system comparable to the Crawford Spring groundwater 

basin may have caused or assisted the capture of the upper Salt River by the lower Salt River. 

Other possible mechanisms of capture include headward erosion or groundwater sapping of the 

early Salt River (Pederson, 2001) or overtopping of the divide by water during glacial  
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Figure 78. Photograph of Crawford Spring

125



 126

impoundment of the Kentucky River basin. The mechanism of this capture was not a focus of 

this study, and detailed field work to resolve the timing and mechanism of capture was not 

conducted. 

Teays and Ohio Rivers 

The bedrock topography of the ancient Teays River system was mapped by Ohio 

Division of Geological Survey (2003), Gray (1982), and Horberg (1950). The buried bedrock 

valley of the Teays River system can be traced from the glacial margin in southeast Ohio, 

through west-central Ohio, across central Indiana, and across Illinois (Figure 79). The Teays 

paleovalley and the modern Ohio River valley converge, or are in close proximity, near the 

modern confluence of the Ohio and Mississippi Rivers at Cairo, Illinois. The sedimentary 

deposits in the Teays River valley and its tributaries have been summarized by Rhodehamel and 

Carlston (1963), Bigham and others (1991), Bleuer (1991), Kempton and others (1991), Luft 

(1980), Swadley (1971), and Teller and Goldthwait (1991). Typically, fluvial deposits of gravel, 

sand, and silt are overlain by lacustrine silts and clays. 

The distance from Carrollton, Kentucky, to Cairo, Illinois, by way of the buried Teays 

River valley is approximately 1250 km. The distance from Carrollton to Cairo along the modern 

Ohio River valley is only 600 km. A generalized profile of the Teays River valley was 

constructed using data from the bedrock topography maps (Figure 80). The average gradient of 

the Teays is approximately 0.110 m/km, compared to a gradient of 0.152 m/km for the modern 

Kentucky River thalweg. The “floor” of the high-level fluvial deposits in the Kentucky River 

valley that extends from the Old Kentucky River paleochannels near Carrollton to the upper 

outlet of the Levee spillway has an average gradient of 0.157 m/km, nearly identical to that of 

the modern Kentucky River thalweg. 

A series of high-level gravel deposits was identified along the Ohio River during the 

KGS-USGS geologic mapping project. These sediments are characterized by sand deposits with 

abundant chert gravel covered with a smooth brown patina. The deposits have been mapped as 

the Ohio River Formation in southern Indiana (Wayne, 1960), as the Luce Gravel near 

Owensboro (Ray, 1965), as the Lafayette Gravel in the Jackson Purchase area (Potter, 1955a, 

1955b), and as unnamed high-level fluvial deposits by Theis (1929) and the KGS-USGS 

geologic mapping program.  The elevations of these deposits are shown in the longitudinal  
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profile in Figure 80. These deposits may represent either Ohio River deposition, or may be 

related to major tributaries such as the Salt River, Green River, and Cumberland River. The 

distribution of deposits grades toward the ancient divide between the Ohio and Teays at 

Madison, Indiana. Whether directly or indirectly related to the Ohio River, the distribution of 

these deposits probably provides a general profile for the Ohio River during the Late Tertiary or 

early Pleistocene. 

When the Ohio River was integrated following the destruction of the Teays River system, 

the distance from the mouth of the Kentucky River to Cairo, Illinois, decreased by roughly 650 

km. The combination of the modern Ohio River and the modern Kentucky River closely parallels 

the Teays profile as shown on Figure 80. Projection of the Old Kentucky River from its position 

at the head of the Teays profile to the upland position “above” the modern Kentucky River 

suggests that the Kentucky River incised to the current level to reach a comparable grade as the 

ancient Teays River. Base-level adjustment following drainage reorganization of the Ohio River 

can account for most of the incision observed in the Kentucky River valley between the Old 

Kentucky River and the modern stream profile. 

Copyright © William Morton Andrews Jr. 2004
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CHAPTER THREE:  GEOCHRONOLOGY, MODELING, AND CONSTRAINTS 

Time Scale and Climate 

A temporal framework is necessary for consideration of landscape evolution or process 

rates. This study does not collect new geochronologic or paleoclimate data. Published reports 

provide a general framework in which the results of the current study can be placed. The results 

of this study can be used as the foundation for specific targeted geochronologic studies of the 

Kentucky River basin. 

The late Cenozoic time scale is based primarily on oxygen isotopes, geomagnetic 

polarity, and fossil data. Many of the sediments in terrestrial settings lack abundant diagnostic 

fossils for biostratigraphic correlation, so dating late Cenozoic sediments in the study area 

primarily relies on paleomagnetism and cosmogenic radionuclide dating. Even though oxygen 

isotopes are not typically measured in these sediments because of issues of modern 

contamination through weathering, etc, many studies relate their findings to the oxygen isotope 

chronology, so it will be included here. Richmond and Fullerton (1986, and references therein) 

summarized the Pleistocene glacial and associated stratigraphy of North America, and related the 

stratigraphy to the oxygen-isotope and geomagnetic polarity time scales for the late Cenozoic. A 

summary of the regional time scale is shown in Figure 81. 

Oxygen has two isotopes, 16O and the less abundant 18O. The lighter 16O is preferentially 

fractionated in water vapor during evaporation of sea water, leaving the ocean relatively enriched 

in 18O. The fractionation is enhanced by colder climates, as water molecules with an 18O atom 

will not have the kinetic energy to vaporize during evaporation. Variations in the isotopic ratio 

through time, thus, are inferred to reflect global or regional variations in climate. The cyclic 

variations of oxygen-isotope ratios observed in foraminifera have been dated and assigned 

sequential numeric stage designations to form a time scale for the late Cenozoic (Shackleton and 

Opdyke, 1976; Imbrie and others, 1984; Pillans and others, 1998; Kitamura and others, 2001). 

The Earth’s magnetic polarity has varied from normal (similar to modern) to reversed 

through time (Easterbrook, 1999). When sediments are deposited, especially those in quiet, low-

energy environments, they are affected by the ambient magnetic field at the time of deposition. If 

the depositional energy is low enough to allow it, magnetically susceptible minerals will be 

oriented in accordance with the magnetic field during deposition, and thus the rocks preserve the  
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orientation of the magnetic field at the time of deposition. Fine-grained clastic sediments and 

volcanic materials have recorded the ambient magnetic field as they were deposited and lithified. 

By dating these materials and noting the magnetic polarity, a chronology of magnetic reversals 

has been established for the late Cenozoic (Mankinen and Dalrymple, 1979). Berggren and 

others (1995) provided revised ages for the late Cenozoic geomagnetic polarity time scale 

(Figure 81).  

Loess deposition in the central United States has been inferred to be genetically related to 

episodes of glacial outwash aggrading major river valleys, when silt was blown off the valley 

trains and deposited in adjacent uplands. The age of a loess deposit thus approximately 

represents the time of glaciation. Forman and Pierson (2002) summarized the geochronology of 

loess deposition in the Mississippi and Missouri River valleys of the central U.S., largely on the 

basis of thermal luminescence techniques. After a sample of silicate sediment is shielded from 

sunlight (i.e. buried), ionizing radiation from naturally occurring radioactive isotopes produces 

free electrons which are subsequently trapped in crystal defects. The introduction of light or heat 

allows the free electrons to recombine with the sediment, and very faint luminescence emissions 

are produced in predictable quantities (Forman and Pierson, 2002).  

Forman and Pierson (2002) bracketed the ages of four distinct episodes of loess 

deposition and identified older deposits beyond the range of their dating techniques. Peoria Loess 

deposition, associated with the Wisconsin glaciation, was dated at 25 to 12 ka. The Roxana Silt, 

representing Middle Wisconsin glaciation, was deposited 60 to 30 ka. The Teneriffe Silt 

represents Eowisconsin and is dated at 100 to 80 ka. The Loveland Silt is inferred to represent 

Illinoisan glaciation, and is dated at 180 to 140 ka. Older loess at Crowley’s Ridge was beyond 

the range of the dating techniques, but Grimley and others (2003) inferred the Crowleys Ridge 

Silt to correspond to oxygen isotope stage 12 (480 to 430 ky) on the basis of soil-development 

characteristics of the overlying Yarmouth geosol. 

Harmon and others (1978) examined oxygen and hydrogen isotope ratios in growth rings 

in Mammoth Cave speleothems, dated by uranium-series disequilibrium methods, to estimate 

climate variations during growth of the speleothems. The record spans from 100 ka to 230 ka, 

and they identified cold climate conditions at 215 to 195 ka and 160 to 130 ka with an 

intervening warm period. Thompson and others (1976) conducted a similar study on speleothems 
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in West Virginia, and identified cold conditions at 160 to 110 ka and again at 95 to 55 ka. 

Hooghiemstra (1984) noted the oldest cold climate signature since 3.5 Ma occurring between 2.5 

and 2.2 Ma in a pollen record from Colombia. Groot (1991) examined palynological evidence of 

Miocene through early Pleistocene climate changes along the Atlantic Coast of North America, 

and inferred the oldest “colder than modern” interval between 2.5 and 2.0 Ma. Boellstorff (1978) 

used fission-track dating on an adjacent ash deposit to estimate the age of the oldest sampled till 

in Iowa at 2.2 ± 0.2 Ma. 

Cosmogenic Radionuclide Dating 

Background 

Traditional radiometric isochron techniques such as K-Ar and U-Pb systems do not work 

well on very young materials. Application of carbon-14 dating is generally limited to materials 

younger than 70 ka. Materials from much of the Pleistocene (from 1.5 to 0.01 Ma) are not 

datable by traditional techniques. Unfortunately, many geomorphological problems, including 

this study, are directly related to Pleistocene events or deposits.  Recent advances in the 

application of cosmogenic isotopes to geomorphology (Bierman, 1994; Cerling and Craig, 1994; 

Granger and others, 1996) have enabled the investigation of Pleistocene geomorphological rates 

and allow rate-based discussion of landform evolution. 

Cosmic rays, primarily protons and alpha particles with very high kinetic energies, 

continually bombard the Earth from outer space. When these particles impact another atom, they 

may create a spallation reaction in the nucleus of the impacted atom. The spallation reaction 

involves the release of neutrons and a subsequent reduction in the atomic number. The released 

neutrons can themselves impact adjacent atoms, causing secondary spallation reactions. In the 

atmosphere, oxygen, nitrogen, and argon are common targets for the cosmogenic collisions, 

because of their abundance in the atmosphere. 

Some of the cosmic rays, or secondary neutrons produced from spallation reactions in the 

atmosphere, impact the surface of the Earth causing terrestrial or “in-situ” production of 

cosmogenic isotopes. These collisions modify the near-surface atoms, producing a variety of 

nuclides. Many of these nuclides are not stable isotopes and quickly decay. Others, such as 26Al 

and 10Be have longer half-lives, and may be used for geochronologic applications. 
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In-situ production of 10Be results primarily from spallation reactions in oxygen. 

Beryllium has one naturally occurring stable isotope (9Be) and two cosmogenic isotopes (7Be 

and 10Be). 7Be has a short half-life of 53 days, and is only useful for very short-term studies 

tracing atmospheric processes and interaction with the lithosphere. 10Be has a half-life of 1.6 

m.y., and is more useful for longer term geological and geomorphological studies. Aluminum 

has only two naturally occurring isotopes: 27Al is stable and 26Al is a cosmogenic radionuclide 

with a half-life of 0.72 m.y. Spallation reactions with silicon atoms produce 26Al. 

10Be is produced both in the atmosphere and in-situ, and can be produced in a variety of 

minerals. Many of the minerals are susceptible to chemical weathering, which can mix 

atmospheric 10Be with in-situ 10Be. Quartz, however, is a relatively abundant surficial mineral 

that is not highly susceptible to chemical weathering. Thus, most if not all of any 10Be measured 

in quartz should be from in-situ cosmogenic production. Cosmogenic processes also produce 
26Al in quartz, providing a second system to test interpretations derived from the 10Be system. 

The production of in-situ cosmogenic isotopes is controlled by numerous factors, many 

of which are not particularly well understood. The factors may all be very difficult to measure or 

quantify for geologic materials. The key element of cosmogenic production is the flux of 

neutrons from the atmosphere, which is difficult to measure and is subject to numerous other 

difficult-to-quantify processes. Earth’s magnetic field shields low latitude areas from part of the 

cosmogenic flux because the geomagnetic field conducts cosmogenic rays away from the equator 

and toward the magnetic poles, creating a latitudinal dependence on production rates (Lal, 1991; 

Dunai, 2000; Desilets and others, 2001). To complicate matters, both the solar production of 

cosmic rays and the Earth’s magnetic field vary with time.  

Other factors are more readily quantified. The depth of the target area within the 

atmosphere affects the in-situ production rate, because cosmic rays and secondary neutrons lose 

energy with each subsequent collision as they penetrate the atmosphere. The neutron flux 

decreases exponentially as the rays penetrate deeper into the atmosphere. The in-situ material 

being impacted by the cosmic rays also affects the production rate. The size of the nuclei 

(reaction cross section) affects the probability of a collision occurring, and the depth into the 

material also affects the production rate through attenuation of the neutron flux.  



 135

The accumulation of in-situ cosmogenic isotopes is also affected by the erosion rate. If 

material is being eroded quickly, the accumulated radionuclides will be removed, reducing the 

concentration remaining in the surficial material. If erosion rates are slow relative to cosmogenic 

production, then the radionuclides will accumulate within the surface material.  

The cosmogenic radionuclides produced in quartz, 26Al and 10Be, are both radioactive and 

decrease in abundance with time. Eventually, after approximately 10 m.y., the quartz becomes 

“saturated” with 26Al and 10Be, as the radioactive loss of these nuclides balances their 

cosmogenic production. Burial of the quartz, and thus isolation from the cosmogenic source, 

allows for a burial age to be calculated by comparing the relative abundances of 26Al and 10Be, as 

the two isotopes decay at different rates. The burial age is based only on the decay of the two 

isotopes, and is thus not confounded by uncertainties in cosmogenic isotope production rates. 

The burial age calculation does assume, however, that the sediment received an adequate dose of 

cosmogenic radiation prior to burial, that it was isolated by burial from cosmogenic influence, 

and that it has not been exhumed and reburied. 

For a given in-situ target undergoing no erosion, the concentration of 26Al and 10Be are 

each dependent on time and on the production rate for each radionuclide. The production rates 

for each radionuclide at a given location can be estimated on the basis of latitude and elevation 

(depth within the atmosphere). Such non-erosional settings are rare in natural environments, 

however. For sites undergoing steady-state erosion, which may be a reasonable assumption over 

long enough periods of time, the concentration of each radionuclide depends on the erosion rate 

at the site and on the production rate for the radionuclides. The production rates for each 

radionuclide are dependent on the same cosmogenic flux, so the ratio of 26Al to 10Be relative to 

the concentration of 10Be in the target varies systematically with erosion rate. A “pre-burial” 

erosion rate, or sediment-source area denudation rate, can be estimated using this technique. 

When the target is buried, and isolated from cosmogenic production, the two radionuclides decay 

systematically; the 26Al:10Be ratio is dependent on the duration of burial and the initial 

concentrations of 26Al and 10Be at the time of burial. Measurement of the concentrations of 26Al 

and 10Be can be plotted on a graph similar to Figure 82. The curved horizontal lines represent 

progressive burial ages. The colored near-vertical lines delineate the decay paths for targets 

derived from areas with specific erosion rates (Figure 82). Post-burial erosion rates can be 

estimated by comparing the geomorphic setting of sediment with a measured burial age, and  
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comparing the data with that from sediment in a different (i.e. higher or lower) geomorphic 

position. Burial ages from sediment in a vertical succession of stream terraces can provide an 

estimate of the incision rate of a stream. 

Two differing erosion rates are commonly pursued in the landscape-evolution literature. 

Basin denudation rates, or landscape erosion rates, measure the wholesale or blanket removal of 

material from across an entire landscape. Fluvial incision rates, however, measure the localized 

vertical erosion rate of a stream within its valley, which may exceed the landscape-erosion rate in 

adjacent uplands by an order of magnitude or more and may be quite variable through time. A 

third, and less considered, measure of erosion is that of lateral erosion by a stream valley. The 

differing concepts of erosion, and their variable rates, must be taken into account when 

interpreting measured data.  

Cosmogenic Burial-Age and Erosion-Rate Studies 

Granger and others (2001) analyzed 26Al and 10Be from quartz pebbles in Mammoth 

Cave to estimate the burial age (cosmogenic shielding age) of quartz sediments (Figure 83). 

Certain passages in Mammoth Cave reflect a phreatic origin, and are graded toward terrace 

levels along the Green River (Palmer, 1981). As the Green River progressively incised its valley, 

higher levels of the cave system were abandoned in favor of lower ones. Granger and others 

(2001) assumed a genetic link between local incision events along the Green River and regional 

changes in the Ohio River system. Although several studies have made a similar assumption 

(Miotke and Palmer, 1972; Palmer, 1981), the link has not yet been demonstrated. Numerous 

resistant lithologies are present in the bedrock of the valley downstream from Mammoth Cave, 

and it is possible that the incision events represent the passage of successive knickpoints 

migrating upstream. However, assuming the former hypothesis is true, the incision events would 

have some significance for timing of regional events. The data set collected by Granger and 

others (2001) at Mammoth Cave offers a unique opportunity to constrain the timing of incision 

events at that particular location along the Green River, regardless of the cause of incision. 

The cosmogenic “shielding” dates measured by Granger and others (2001) represent the 

time at which the pebbles entered the cave system, and not necessarily when they were deposited 

at the sample locations in the cave. Thus the oldest dates in a passage do not necessarily 

represent the minimum age of the passage because some sediment may have been inherited from  
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older levels, although Granger and others (2001) carefully selected their sample sites away from 

major cave-passage intersections to minimize the effects of sediment inheritance and reworking 

within the cave. The youngest coarse-grained sediment found in each level represents the 

maximum age of abandonment of that level, and thus provides an approximate chronology of 

incision events along the Green River.  

Figure 84 shows a profile of the ages and elevations of the sediment measured in 

different levels of Mammoth Cave. On the basis of these data, Granger and others (2001) 

inferred incision events to have occurred at approximately 0.75, 1.1, 1.45, and 2.0 Ma (Figure 

84). By considering these data in terms of the elevation of the samples, Granger and others 

(2001) suggested average fluvial incision rates of 30 m/m.y. since 2 Ma. However, as noted by 

Granger and others (2001), fluvial incision probably occurred during abrupt downcutting events. 

Fluvial erosion rates were probably highly variable through the Plio-Pleistocene. Maximum 

fluvial erosion rates for the Green River at Mammoth Cave may be as high as 75 to 100 m/my, 

on the basis of 15 to 20 m incision events occurring over relatively short (~ 0.2 m.y.) time scales. 

The 26Al:10Be ratio of the samples suggests upland, sediment-source erosion rates of 2 to 7 

m/m.y. for the past 3.5 m.y. (Figure 85) (Granger and others, 2001). 

In a similar study, Granger and others (1997) used 26Al and 10Be in quartz-rich cave 

sediment to infer a burial or “shielding” age of gravels deposited in caves during downcutting of 

the New River in Virginia (Figure 83). Using a standard regression technique of age vs. 

elevation, they inferred an average fluvial incision rate of 27.3 ± 4.5 m/my since 1.5 Ma, 

comparable to the estimate of Granger and others (2001) for the Green River at Mammoth Cave. 

The data are insufficient to identify punctuated periods of incision comparable to the Mammoth 

Cave study. The 26Al:10Be ratio of the samples suggests sediment-source erosion rates of 2.5 to 9 

m/m.y. for the past 1.5 m.y. (Figure 85) (Granger and others, 1997). 

Granger and Smith (1998) measured burial ages using 26Al and 10Be in quartz sediment 

underlying lacustrine deposits at three unspecified locations in Kentucky and West Virginia. 

They reported an average age of Teays valley sediments or equivalents to be 1.13 ± 0.16 Ma. 

Granger (personal communication, 2001) also used 26Al and 10Be to estimate burial ages of 

sediment at Carson, Kentucky, and Scott Depot, West Virginia (Figure 83). The samples for this 

study were collected roughly 10 m below the surface of exposed fluvial deposits. The age  
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estimates reported by Granger (personal communication, 2001) do not agree with the estimates 

as plotted on Figure 85. The reported burial age for gravel from the Carson site is 1.43 +0.32/-0.31 

Ma. Sand samples from the Carson site have reported burial ages of 1.93 +0.74/-0.57 Ma and 1.36 
+0.57/-0.55 Ma. The Scott Depot gravel has a reported burial age of 1.30 +0.43/-0.40 Ma. The data as 

plotted on Figure 85 suggest burial ages of 0.9 to 1.2 Ma. 

Granger and Smith (2000) measured the concentration of 26Al and 10Be in a 10-m profile 

of Irvine Formation sand near Rice Station in Estill County, Kentucky, at an elevation of 275 m 

(900 ft) (Figure 83). They used an empirical approach to model various factors—including 

sediment density, sediment-source erosion rate, surface erosion rate, and time—to produce a best 

fit model age for concentrations of 10Be in the profile. Granger and Smith (2000) examined the 

influence of varying the different parameters on an idealized production/isotope-concentration 

curve. Granger and Smith (2000) then substituted what they considered to be geologically 

reasonable values for sediment density (1.8 g/cm2), pre-burial sediment-source area erosion rate 

(50±5 m/m.y.), and modern surface erosion rate (6.2±0.2 m/m.y.).  They reported the resulting 

estimated model age to be 1.50 +0.32/-0.25 Ma. 

Granger (personal communication, 2001) noted an earlier estimate of the Rice Station 

model age to be 1.74 +0.41/-0.33 Ma, but that it had been revised on the basis of unspecified 

“additional data” to the published estimate of 1.50 Ma. The data at Rice Station, as plotted on 

Figure 85, would suggest much younger ages of 0.4 to 1.2 Ma. The 10Be profile for the site is 

well within the depth of cosmogenic influence of roughly 10 m for this setting. Thus, the 

younger plotted ages for Rice Station, compared to the older modeled ages for the data, most 

likely result from the post-burial cosmogenic production of 10Be.  

The data from the Rice Station, Carson, and Scott Depot sites collectively suggest 

sediment-source erosion rates of 10 to 30 m/m.y. (Figure 85). The sediment-source erosion rates 

are similar for studies in comparable settings: 2 to 9 m/m.y. for “shielding” ages in caves, and 10 

to 30 m/m.y. for “exposed” fluvial deposits. This may represent either a systematic flaw in the 

assumptions of these studies, which would be consistent with the age discrepancies in the 

exposed fluvial samples. These sites may have undergone multiple episodes of cosmogenic 

production, which would render ages and erosion rates estimated by the current techniques to be 

unreliable. Renewed production of cosmogenic radionuclides would create anomalously young 
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ages for the samples. The plotted erosion rates would represent an average of inherited sediment-

source 26Al:10Be ratios and 26Al:10Be ratios consistent with the comtemporary erosion rate of the 

fluvial sediment. Alternatively, the data may actually represent a genuine natural trend of higher 

sediment-source erosion rates in the Kentucky and West Virginia parts of the Teays River 

system. If so, the plotted data suggest a gradual increase in sediment-source erosion rates through 

time.  

The Carson site (elevation 201 m) is located very near the “floor” of high-level fluvial 

deposits in the Kentucky River valley, estimated to be 200 m near Carson. The Rice Station 

deposit (elevation 275 m) is approximately 35 m higher than the upper outlet of the Levee 

spillway (240 m), which is the upstream end of the “floor,” and should therefore be older than 

the Carson deposit (Figure 86). Assuming a nearly coincident age of the two sites (1.43 and 1.36 

Ma as reported at Carson, and 1.50 at Rice Station), as reported by Granger and Smith (2000) 

and Granger (personal communication, 2001) would suggest incision rates of nearly 500 m/my. 

The development of numerous abandoned meanders and fluvial deposits between the two levels 

argues against an extreme fluvial incision rate for the interval above the “floor.” Using the 

plotted age of the Carson site gravel (1.1 Ma) and the discarded age of Rice Station, 1.74 Ma, 

results in calculation of a more moderate erosion rate of 55 m/my. Figure 87 illustrates the range 

of possible ages for the Rice Station and Carson deposits, and shows the ages suggested by 

Figure 85. 

Lateral Erosion Rates 

The lateral erosion rate is a key variable in determining valley morphology. Valleys 

constrained by lithologies resistant to lateral erosion have different morphologies from those 

underlain by lithologies more susceptible to lateral erosion. Fluvial incision rates as large as 100 

m/m.y. have been estimated for Kentucky streams, as discussed in the previous sections. No 

direct estimates of lateral erosion rate have been published for Kentucky streams. The closest 

study of this sort is that by Brakenridge (1984, 1985) along the Duck River, a tributary of the 

Tennessee River. 

Brakenridge (1984, 1985) used trenching and radiocarbon dating to investigate the late 

Pleistocene and Holocene floodplain stratigraphy of the Duck River in west central Tennessee. 

The Duck River has developed an “in-grown” pattern of incised meanders with asymmetric  
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valley walls and slip-off slopes eroded into Ordovician Lebanon Limestone (thin-bedded 

limestone with shale partings) and Ridley Limestone (thick-bedded limestone with minor 

dolostone beds). The lithologies are similar to those in the Tyrone Limestone and Oregon 

Formation, respectively, in the Kentucky River valley. The stratigraphy and lithologies are 

comparable to those associated with the Tyrone style of valley morphology in this study. On the 

basis of comparison of the two rivers on 1:250,000 topographic maps, the Duck River and 

Kentucky River have comparable meander amplitudes and wavelengths. Detailed measurements 

of alluvial-valley widths are not available for the Duck River. 

Using detailed stratigraphy of the floodplain material to reconstruct channel positions 

during the last 30,000 years, Brakenridge (1985) estimated lateral stream migration rates of 6 to 

19 m/ky (6,000 to 19,000 m/m.y.), and lateral bedrock-cliff erosion rates of 5 to 14 m/ky (5,000 

to 14,000 m/m.y.) with negligible vertical erosion during that same time. These short-term, 

lateral rates are two to three orders of magnitude greater than vertical incision rates measured 

elsewhere in the region, and discussed in the previous sections. It should be noted, however, that 

lateral erosion was focused only where cut banks of the Duck River impinged upon the bedrock 

walls of the valley, and were neither spatially nor temporally continuous through the study area. 

Paleomagnetic Data 

Bonnett and others (1991) observed normal and reversed magnetic polarity in samples 

from Minford Silt Member of Teays Formation (impoundment phase of Teays Valley). The 

magnetically reversed measurements were from less weathered samples. They attributed the 

normally magnetized measurements to weathering, and thus “resetting” in a normal magnetic 

setting. They inferred deposition of the Minford Silt to have occurred during the Matuyama 

reversed polarity chron (0.79 to 1.60 Ma). The Calcutta Silt is another fine-grained valley fill 

unit in valleys northeast of the Teays system. Lessig (1961, 1963, 1964, cited in Fullerton, 1986) 

noted that the Calcutta Silt is older than the Minford Silt on the basis of stratigraphic, 

geomorphic, and pedologic criteria. 

Bleuer (1991), in his review of the stratigraphy of materials filling the buried Teays-age 

Lafayette valley in Indiana, noted that the oldest till (West Lebanon Till Member) rests upon pro-

glacial sediments exhibiting reversed magnetization. Teller and Last (1981) performed 

preliminary paleomagnetic investigations of the Claryville Clay in the Licking River valley as 
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part of a more comprehensive study. They noted that the Claryville Clay is pre-Illinoisan in age 

on the basis of geomorphic and stratigraphic relationships. All of their samples yielded normal 

remnant magnetism. Ettensohn (1974) noted that most of the Claryville Clay is weathered, and 

thus the paleomagnetic signature of these samples may have been reset by post-Matuyama 

weathering.  

Schmidt (1982) examined the paleomagnetic polarity of fine-grained sediments in 

Mammoth Cave. He identified reversed polarity in samples between 170 and 208 m (560 and 

680 ft) in elevation in the cave system. He inferred these sediments to have been deposited 

during the Matuyama reversed polarity epoch. The subsequent cosmogenic dating on cave gravel 

by Granger and others (2001) supports that hypothesis. Pease and others (1994) and Pease and 

Gomez (1997) correlated a similar pattern of paleomagnetic signatures in cave sediments in 

southern Indiana with those in Mammoth Cave. 

Glacial Loading and Crustal Flexure 

The current study examines landforms and fluvial deposits in the context of modern 

elevations. However, the advance of Pleistocene continental ice sheets introduced a significant 

load on the lithosphere of the region. The underlying asthenosphere is displaced as the 

lithosphere is depressed by a mass of overlying ice. Understanding the potential rate and 

magnitude of lithospheric deflection can be useful to reconstruct environments during a glacial 

advance. The rate of downward displacement is constrained by the viscosity of the asthenophere. 

If the ice remains in place long enough, isostatic equilibrium will be achieved. The mass of the 

displaced asthenosphere will be equal to the mass of the displacing ice. The equations discussed 

below are from, or are modified from Turcotte and Schubert (1982). Explanation of symbols is in 

Table 4. 

ρmghm = ρighi 

Reorganizing the equation shows that the displacement of the lithosphere (equal to the 

displacement of the asthenosphere) is proportional to the thickness of the ice sheet and the 

density ratio of ice to asthenosphere. 

hm = (ρi/pm)hi 
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Table 4. Explanation of symbols used in flexure calculations 

 

Symbol Parameter Units 
ρi density of ice kg/m3 

ρm density of the mantle kg/m3 

g gravitational acceleration m/s2 

hm displacement of the mantle* m 
hi thickness of ice m 
h thickness of lithosphere m 
D flexural rigidity (kg.m2)/s2 

E Youngs modulus kg/(m.s2) 
υ Poissons ratio  
α flexural parameter m 
w lithospheric displacement m 
τr characteristic response time s 
µ viscosity (kg.s)/m2 

λ wavelength m 
wb height of forebulge m 
xb distance to forebulge m 
x0 width of proximal trough m 

  
 * or maximum lithospheric defelection 
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The plate beyond the margins of the ice is bent in response to the ice load, and a trough is formed 

proximal to the ice front. The flexural rigidity of the plate incorporates the plate thickness, 

Poisson’s ratio, and Young’s modulus: 

D = Eh3 / (12 (1 – υ2)) 

The flexural parameter is determined by  

α = [4D / ((ρm-1)g)]0.25 

The deflection equation describes the ideal response of a homogeneous plate; the 

maximum displacement is assumed to be the magnitude of the isostatic adjustment of lithosphere 

at/near the ice margin. 

w = hm e(-x/α) (cos(x/α) + sin (x/α)) 

Rearrangement of the equation will allow for determination of the ideal half-width of the trough 

proximal to the ice, which is constrained by the flexural parameter 

x0 = 3π/4 * α 

The distance to the crest of the associated forebulge is also constrained by the flexural parameter, 

and is described by  

xb = π * α  

The amplitude of the bulge is directly related to the thickness of the ice sheet: 

wb = - hm e-t = -0.0432 hm 

Essentially, the flexural properties of the underlying lithosphere determine the wavelength of the 

crustal response to the ice load, whereas the thickness of the ice sheet determines the amplitudes 

of the surface deflections. The crust can be assumed to have had reasonably similar properties in 

the Pleistocene as now, but the thickness of glacial ice is not well known or constrained.  

Figure 88 illustrates a variety of estimates for the equilibrium flexure proximal to a 

hypothetical ice sheet. The estimates assume that ice thickness ranges between 1000 and 1500 m, 

and effective flexural thickness is 35 to 40 km. The ice-proximal trough would be 190 to 225 km 

wide. The maximum depression at the ice margin would be approximately 30% of the ice 

thickness. The crest of the forebulge would be 260 to 300 km from the ice front, and would be no  
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more than 20 m high. The amplitudes of responses should be less if the ice sheet does not remain 

in place long enough for equilibrium conditions to develop. Figure 89 shows the maximum 

flexure across central Kentucky using the maximum limit of pre-Illinoisan glacial deposits, and 

assuming an ice thickness of 1000 m. 

Application of these equations assumes that the ice was stable at its maximum extent for 

a length of time sufficient for isostatic equilibrium to be reached. The required response time is 

constrained by the viscosity of the displaced lithosphere. The characteristic time of the flexural 

response is given by 

τr = (4πµ)/(ρmgλ) 

The exponential flexural response as a function of time is described by 

w = hm e(-t/τ) 

The thickness of the responsible ice sheet is unknown, so the exponential portion of the equation 

can be used to model the percent response of the system, independent of ice thickness. The 

flexural response as a function of time can be graphed as shown in Figure 90. The timing and 

duration of pre-Wisconsin glacial maxima is poorly constrained, and the actual flexural situation 

was probably much more dynamic. An incompletely developed trough-bulge system migrated 

with the advance and retreat of glacial ice. The potential dynamic responses of flexure associated 

with a moving or fluctuating ice load are beyond the scope of this study. 

The configuration of the maximum preserved extent of glacial ice for Illinoisan and pre-

Illinoisan glaciers would have completely blocked the mouth of the Licking River valley. The 

amount of time the glacier remained at this maximum would determine the magnitude of crustal 

depression proximal to the ice front, and thus affect the extent of the resulting ice-dammed lake 

in the Licking River valley. If the depression reached a maximum, the topographic divides 

adjacent to the ice front would be depressed significantly below the original elevations; ice-

marginal flow over the divides would prevent extensive lakes and lake deposits. The Claryville 

Clay and associated lacustrine deposits have been well documented (Ettensohn, 1974; Luft, 

1980; Teller and Last, 1981), supporting the model of significant slackwater deposition in the 

Licking River valley. A spillway between the Licking and Kentucky River basins, at a modern 

elevation of 270 m (890 ft), has been documented by this study near the community of Levee in  
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Montgomery County. As such, it provides a minimum extent to which the impounded water must 

have reached upvalley in order for the spillway to have formed and existed.  

Digital elevation models can be used to compare different potential scenarios of glacial 

flexure in central Kentucky. Figure 91 shows the estimated extent of a lake on the modern 

topography with no glacial flexure imposed, filling the lake to the elevation of the Levee 

spillway. Figure 92 shows the same extent with flexure imposed, filling the lake to the level of 

significant overflow of the ice-proximal divide. The hypothetical lake, assuming flexural 

depression, does not reach the Levee spillway.  

Using modern topography as a base, and filling the areas upstream of Cincinnati to an 

elevation of 270 m (890 ft) results in a hypothetical impoundment of approximately 3 million 

hectares in extent and 1,000 billion cubic meters in volume. The modern average flow of the 

Ohio River past Cincinnati is approximately 100 billion cubic meters per year. This suggests that 

the extensive lake behind any ice blocking the Ohio and Licking River systems would have filled 

on a decade timescale, which is nearly instantaneous in comparison to the millennial response of 

crustal flexure. The syn-glacial flow of the Ohio River and the syn-glacial precipitation and 

runoff regime are not known. However, an order of magnitude difference between the modern 

and glacial values would result in estimates of lake impoundment on 1- to 100-year time scales. 

Thus, a lake could have rapidly formed and extended far upstream as in Figure 91, and gradually 

evolved with progressive lithospheric flexure to more resemble Figure 92. As crustal flexure 

occurred, different spillway exits were activated for the impounded waters progressively 

downstream, until the water drained across the ice front in a deeply flexed setting, assuming that 

the ice stayed in position long enough for this scenario to completely develop. 

Overburden Reconstruction and Paleogeography 

To consider rates of fluvial erosion in context, the total overburden removed from the 

study area and the rates at which it was removed must be estimated. Much of the Paleozoic 

stratigraphic section, exposed elsewhere in Kentucky, has been eroded from the crest of the 

Cincinnati arch in central Kentucky. Using thicknesses from geologic maps and from subsurface 

data (Figure 5), hypothetical thicknesses of these stratigraphic units can be projected over the 

arch. Silurian strata are known to pinch out beneath a Middle Devonian unconformity along the 

axis of the arch (Peterson, 1981; McDowell, 1983) and are not included in the reconstruction.  
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Figure 93 uses maximum estimated thickness of non-Silurian units (by assuming the units do not 

thin onto the arch) to extrapolate a maximum thickness of cover across the arch. Assuming some 

of these stratigraphic units thin toward the arch, the extrapolation should provide a maximum 

thickness of removed sedimentary cover. 

Because these projections are relatively arbitrary, independent means of confirmation can 

be used to constrain the estimated thicknesses. Thermal maturity indicators such as the conodont 

alteration index (Epstein and others, 1977; Harris and others, 1978; Ryder, personal 

communication, 2004), vitrinite reflectance (O’Hara and others, 1990; Williams, 1984), and 

fixed carbon (Williams, 1984) can be used to estimate the depth to which a sediment body was 

buried, after making assumptions about the thermal gradient. Vitrinite reflectance can be used to 

roughly constrain the thermal gradient, if enough data are available (O’Hara and others, 1990). 

The available thermal maturity data have comparable spatial trends, suggesting that a reasonable 

estimate of overburden can be made (Harris and others, 1978). The “restored” land surface for 

conodonts from Paleozoic rocks, on the basis of conodont data in Epstein and others (1977), 

Harris and others (1978), and Ryder (personal communication, 2004), and the tops of the 

relevant stratigraphic units are shown in Figure 94. Adding from 425 to 700 m of overburden 

onto the existing topography provides the best fit to the thermal maturity data. The 700-m 

thermal maturity reconstruction is in close agreement with the stratigraphic thickness 

extrapolation estimate. 

The youngest bedrock units preserved in the Appalachian and Illinois basins are Permian 

in age. During the Late Pennsylvanian and early Permian, the study area was along the western 

margin of an overfilled foreland basin (Figure 95) (Donaldson and others, 1985; Chesnut, 1994; 

Greb and others, 2002). The study area experienced a fluctuating coastal margin between fluvio-

deltaic sediments being transported northwest from the Appalachian highlands on the southeast 

and marine incursions from the west (Heckel, 1995). Sandstones of the Upper Pennsylvanian 

Conemaugh and Monogahela Formations in northeastern Kentucky trend to the northwest (Rice 

and others, 1979), subparallel to the dominant drainage directions of modern streams and 

perpendicular to structural trends of the Alleghanian orogen (Figure 95). Paleodrainage systems 

in the Pennsylvanian of the Illinois basin trend to the west (Wanless and others, 1963). As basin 

depocenters migrated northward when the basin overfilled (Greb and others, 2002), fluvial 

systems carried sediment across the filled Appalachian basin into the Illinois basin. The fluvial  
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transport direction from southeast to northwest would have produced a depositional surface 

graded toward the northeast across the study area. 

Assuming deposition ceased and erosion began in the latest Pennsylvanian, the landscape 

has evolved to its present configuration during approximately 285 m.y. The 700-m 

reconstruction suggests a long-term average landscape erosion rate of roughly 2.45 m/my, 

whereas the 425-meter reconstruction would imply a long-term average landscape erosion rate of 

approximately 1.5 m/my. These rates are consistent with the 2 to 7 m/my estimate of Granger 

and others (2001) for the Mammoth Cave area. 

Fission track data analyze crystal-scale damage from the decay of naturally occurring 

radioactive isotopes to estimate the thermal history of a sample. The tracks created by the release 

of alpha particles are healed at selected temperatures. For a known concentration of radioactive 

isotopes, a statistical analysis of track lengths and frequency in a crystal can provide an estimate 

of the thermal history of the sample. Roden and others (1993) and Boettcher and Millikin (1994) 

have produced fission-track thermal histories in the study area (Figure 96). Roden and others 

(1993) considered data from zircons and apatites in Ordovician bentonites along the crest of the 

Cincinnati arch; they inferred that cooling has gradually accelerated since 250 Ma. Boettcher and 

Milliken (1994) examined fission tracks from Pennsylvanian sandstones near Pine Mountain in 

eastern Kentucky. They inferred a more complex thermal history, with cooling from 140° 

beginning at approximately 170 Ma. The cooling curve shows a slower cooling rate between 80 

and 30 Ma, and then accelerating cooling from 30 Ma until the present. 

Estimates of overburden thickness from fission-track data require assumptions about the 

thermal gradient of the study area. O’Hara and others (1990) estimated Pennsylvanian thermal 

gradients as large as 60°/km on the basis of vitrinite reflectance data. Price (1978) measured 

modern geothermal gradients of approximately 15°/km. Therefore, the thermal gradient of the 

study area has likely changed significantly through time, making quantitative overburden 

estimates difficult from the available fission track data. 

Implications for Landscape Evolution 

Although most landscape reconstructions in central Kentucky begin with an inferred late 

Tertiary regional erosional peneplain (Fenneman, 1939; Jillson, 1930, 1945a, 1963; Thornbury, 

1965; Straw, 1968; and Warwick, 1985), the existence of a peneplain is an interpretation derived  
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from hypothetical landscape-evolution models and is not based upon empirical data. A more 

temporally distant, but empirically justified geomorphic datum would be the transition from 

deposition along a fluvio-deltaic coastal plain during much of the Pennsylvanian to a 

transportational and subsequent erosional regime during the Late Pennsylvanian or Early 

Permian. Details of the surface are impossible to determine, but the general pattern of an 

overfilled foreland basin graded to the northwest and transporting sediment into the Illinois basin 

provides a general conceptual model for the starting point of inferring landscape evolution trends 

in central Kentucky. This northwest-graded landscape surface has been progressively eroded 

since the late Paleozoic or early Mesozoic; accelerated erosion began in the Oligocene or 

Miocene (Hulver, 1997).  

Copyright © William Morton Andrews Jr. 2004
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CHAPTER FOUR:  IMPLICATIONS AND DISCUSSION 

Relative Chronology 

This study has undertaken to develop the framework within which subsequent targeted 

geochronological studies could be conducted. Limited geochronological studies have been 

conducted in the area, as discussed in Chapter 3, and these data are used to constrain the general 

timing and rates of events. The data available for interpreting the geologic history of the basin 

decrease steadily with age. With each progressive step back in time, fewer data and clues are 

available to reconstruct the ancient landscapes. On the basis of the 1.5 to 1.74 Ma age estimates 

for the Irvine Formation, which is mapped near the upland summits, only the last 2 m.y. of 

fluvial history is recorded in the existing profiles and landscape. However, a speculative 

reconstruction of the Late Pennsylvanian to Permian landscape across the study area can be 

reasonably inferred from bedrock geology and thermal maturity data. 

Early Depositional Slope 

During much of Pennsylvanian time, the central Appalachian basin was an active 

foreland basin, receiving sediment from the rapidly rising and eroding Alleghanian orogeny 

(Donaldson and others, 1985; Chesnut, 1994; Heckel, 1995). A fluvio-deltaic coastal plain 

developed with rivers carrying sediment northwestward away from the active mountain belt.  

These sediments spilled across the Cincinnati arch, contributing thinner deposits to the Illinois 

basin (Greb and others, 2002). As the Appalachian basin filled and depocenters migrated 

northward toward the Dunkard basin in Late Pennsylvanian and Early Permian time (Donaldson 

and others, 1985; Greb and others, 2002), the study area became less of a depositional center and 

more of a transportation zone, where rivers flowed across the young coastal plain, carrying 

sediment to the Illinois basin (Figure 95).  

The Pennsylvanian-Permian land surface has long since been eroded away, and thus all 

evidence that could be used to directly reconstruct that surface is lost. Nevertheless, some 

general constraints can be reasonably inferred from the depositional environments represented in 

the Appalachian and Illinois basins. Whereas the surface of the coastal plain had been recently 

deposited by active river systems, the entire land surface should have mimicked, in general, 

something akin to the ideal equilibrium profile of a river system. The absolute elevation of this 

former land surface above the modern landscape is not known, but the landscape reconstruction 



 165

described in Chapter 3 helps to constrain the range of possibilities. A liberal stratigraphic 

reconstruction and maximum estimates from thermal maturity indices, such as conodont 

alteration, supported by vitrinite reflectance, suggest that a maximum of 700 meters of sediment 

has been removed from the crest of the Cincinnati arch. The bulk of the thermal maturity data, 

however, suggests the amount of removed overburden could be as little as 450 to 500 meters 

(Figure 94). The limited amount of overburden implies very slow average landscape erosion 

rates since the Permian. 

Early to Mid Tertiary Record Absent 

The eroded interval between late Paleozoic and late Tertiary time offers no direct 

evidence of past fluvial profiles or landscape evolution rates or conditions. The only clues to the 

conditions existing during this time come from unroofing and denudation studies from fission-

track dating and similar techniques. These studies suggest slow and steady erosion since the 

Permian (Roden and others, 1993) or initially slow erosion, with a significant increase in erosion 

rate during mid-Tertiary time (Boetcher and Millikin, 1994; Hulver, 1997). 

Numerous hypotheses put forward by previous workers (e.g. Jillson, 1963; Luft, 1986) 

require fluvial profiles that project well above the modern land surface, and are thus more than 

likely untestable. Luft’s (1986) possible connection between the South Fork of the Licking River 

and the Kentucky River projects above the modern land surface in the Kentucky River basin. The 

profiles on the Licking River side closest to the Kentucky River divide show a distinct 

steepening, suggesting that this is the head of that particular fluvial profile. The divide is the 

highest part of the modern landscape, and any deposits representing the connection between the 

two streams, or defining an ancient longitudinal profile of the connection, would predate any 

features currently observable in the landscape. 

Jillson’s (1963) “Mesozoic course” of the Kentucky River has only three possible intact 

valley segments: the Colby, Wyandotte, and Cedar gaps (Figure 74). The distribution of quartz 

pebbles found across Jillson’s central Kentucky profile for this stream shows a distinct convex 

up profile, ranging over nearly 100 m of relief. The sites range higher in elevation in a 

“downstream” direction as inferred by Jillson (1963) as far as Wyandotte gap; the elevations are 

progressively lower “downstream” from Wyandotte gap. If the quartz-pebble locations do indeed 

mark a paleocourse of the Kentucky River, the course significantly predates any features in the 
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modern landscape, and the pebbles in the deposits have been let down with significant bedrock 

eroded from beneath them. As the topography has been inferred to have been shaped by 

significant fluvial erosion of bedrock, broad distribution of such long-lived residual deposits is 

unlikely.  

Early Glaciations 

The first indication of major climatic cooling and the first record of continental glaciation 

in the Midwestern states are recorded between 2.5 and 2.0 Ma (Hooghiemstra, 1984; Groot, 

1991). This first cold climatic interval would have dramatically affected vegetation. The long 

preceding warm climates should have led to very mature vegetational communities, wherein only 

a few species tolerant of dramatic climate shifts may have been present. If so, this first glacial 

stage would have led to decreased vegetation cover, and increased erosion, as local ecosystems 

adapted to colder climates with the advance of glaciers. This would in turn have resulted in 

increased erosion of surficial residuum, and mobilization of sediment long held within mature 

soils. This could potentially explain the sudden flux of brown-patina chert found in the Lafayette 

Gravel and similar deposits—Irvine Formation, Old Kentucky River gravels, Ohio River 

Formation, Luce Gravel, etc—around the Ohio River valley. 

The origin of the Teays River system (Tight, 1903) is unclear. Gray (1991) speculated 

that an early glaciation formed the Teays system, reorganizing an older system flowing to the 

Great Lakes area. This hypothesis remains untested. An alternative hypothesis, similarly 

untested, is that the Teays drainage is a remnant of older drainage systems that parallel the late 

Paleozoic drainage systems suggested by bedrock sandstone trends. Either way, the Teays River 

system was well developed enough to be significantly entrenched into the surrounding bedrock 

(Gray, 1982, 1991; Ohio Division of Geological Survey, 2003) before it was disrupted by a later 

glaciation (Swadley, 1971).  

The age of the glaciation that disrupted the Teays River was poorly constrained before 

recent cosmogenic isotope dating of fluvial deposits (Granger, personal communication, 2001). 

The till of the disrupting glaciation is associated with reversed-polarity lacustrine sediment 

(inferred to be >0.78 Ma), whereas younger sediments filling the Teays River valley, including 6 

younger tills and associated deposits, show normal magnetization (<0.78 Ma). Similar reversed-

polarity lacustrine sediment in the unglaciated Teays valley in West Virginia, the Minford Silt, 
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overlies fluvial sediment that was cosmogenically dated at 1.3 Ma (Granger, personal 

communication, 2001), which falls within the time period of the Matuyama reversed polarity 

epoch. Comparable dates of 1.36 to 1.43 Ma (Granger, personal communication, 2001) for 

fluvial deposits in the Old Kentucky River system that are below lacustrine and outwash deposits 

also fall within the Matuyama epoch, which ended at approximately 0.78 Ma. These data 

combined suggest that the glacier that blocked and diverted the Teays River did so sometime 

between 1.3 and 0.78 Ma. 

A total of seven tills have been identified in the Teays Valley, and five tills have been 

identified just south of the Wisconsin glacial limit in Decatur County, Indiana. The evidence 

from Luft (1980), Ettensohn (1974), Swadley (1971), Teller (1970), and this study all support the 

interpretation of only two major episodes of glaciation in northern Kentucky, the Illinoisan and 

one pre-Illinoisan advance. The two pre-Illinoisan tills identified by Leighton and Ray (1965) in 

northern Kentucky probably represent two temporally related advances of ice (Teller, 1970) 

because there is no significant and reliable geomorphic distinction between the two. The joint 

KGS-USGS mapping program recognized only one unit of pre-Illinoisan drift in the area. If so, 

only the oldest pre-Illinoisan till identified in Decatur County (located south of the buried Teays 

valley) advanced to the northern Kentucky area, and subsequent pre-Illinoisan ice was limited to 

the abandoned Teays valley and points north. 

Spillways 

A paleochannel has been identified extending from the Kentucky River valley to a divide 

between the Kentucky and Licking River basins, and is interpreted here as a spillway that was 

active during times when the Licking River was impounded by glacial ice. The spillway has two 

outlets: one near the mouth of Upper Howards Creek along the Kentucky River at an elevation of 

240 m, and another emptying into the Red River valley near Clay City at an elevation of 228 m 

(Figure 64). Both outlets of the spillway are geomorphically lower, and thus younger, than the 

Irvine Formation, which has an estimated age of 1.5 to 1.74(?) Ma (Granger and Smith, 2000; 

Granger, personal communication, 2001).  

The spillway outlets are at the upstream end of the “floor” of most fluvial features for the 

Kentucky River valley. The upper outlet is on one end of the projected floor, but the lower is also 

relatively close to the profile trend of the “floor” (Figure 67). The downstream end of the “floor” 
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coincides with the Old Kentucky River deposits near Carrollton, which are overlain by glacial 

deposits (Swadley, 1971). The glacial impoundment that created the original spillway and that is 

represented by the upper spillway outlet most likely corresponds in age to the glacial deposits 

found in the Old Kentucky River valley downstream, on the basis of their coincidence in the 

longitudinal profile of the Kentucky River and on the proximity of the mouth of the Licking 

River valley to the Old Kentucky River deposits. The lower spillway outlet might represent a 

later activation of the spillway during the same glacial episode, but this is not testable without 

more detailed geochronologic data. The lower spillway outlet is a hanging valley more than 50 m 

above the modern Red River valley. On the basis of the distribution of Illinoisan and pre-

Illinoisan glacial deposits, the Licking River valley would have been impounded, and the 

spillway thus active, during both phases of glaciation. 

The upper Salt River above Lawrenceburg, Kentucky, was inferred to have originally 

been a tributary of the Old Kentucky River and to have been captured by the lower Salt River 

(Leverett, 1929), and this interpretation is supported by this study (see discussion in Chapter 2). 

The elevation of the modern divide suggests that the capture occurred when the upper Salt River 

was at an elevation of about 242 m (795 ft). This is approximately 30 m above the floor of fluvial 

deposits in this stretch of the Kentucky River valley. However, if the downstream along-tributary 

distance to the main valley is considered, coupled with the above-knickpoint slope of modern 

tributaries, the capture elevation is within 10 m of the estimated floor of fluvial deposits (Figure 

97). The timing of the capture is not firmly constrained, but on the basis of the position in the 

tributary profile, it most likely occurred shortly prior to, if not contemporaneous with, the glacial 

impoundment of the Kentucky River represented by the fluvial-lacustrine-glacial transition of 

sediments in the Old Kentucky River valley near Carrollton. Karst capture, analogous to the 

modern Crawford Spring karst groundwater basin in Boyle County (Paylor, personal 

communication, 2001), may have assisted in the capture process. 

Considering the significant deposit of Illinoisan drift at Carrollton (Figure 54), it is a 

reasonable hypothesis that the Kentucky River was impounded at least briefly during the 

Illinoisan. The lacustrine sediment in the Old Kentucky River valley near Carrollton clearly  

suggests that the valley was significantly impounded during the pre-Illinoisan glacial advance 

into the area. For both Illinoisan and pre-Illinoisan lakes, the impounded water would have had  
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to find an escape route into the Salt River valley or the Green River valley. The lowest point 

along the southwestern divide of the Kentucky River valley is where the upper Salt River makes 

a sharp bend to the west south of Lawrenceburg. The divide between the modern Kentucky and 

Salt River valleys is approximately 242 m (795 ft) at this point. Any impoundment of the 

Kentucky River valley would likely have drained across the divide at this point, and been 

released through the lower Salt River valley. This is approximately 20 meters above the “floor” 

of fluvial deposits in the area. 

Other spillways are identifiable near the glacial fronts in northern Kentucky (Figure 67). 

The Licking River spillway near Walton is higher in elevation than that in Montgomery County, 

and would have been activated only after glacial loading had induced sufficient crustal flexure to 

tilt the landscape toward the ice and open flow across the downstream spillway. No geomorphic 

outlets for the spillway are preserved in the Kope Formation on the Kentucky River side of the 

Walton spillway. Another spillway is inferred at the headwaters of the Little Kentucky River in 

Trimble County at an elevation of approximately 256 m (840 ft). This spillway would have also 

been activated only after significant tilting, and also lacks a clear downstream outlet. 

Kentucky River Incision 

Bedrock erosion logically requires the absence of fluvial deposits between the river and 

the bedrock it is eroding. Thus, an actively or aggressively eroding bedrock stream is unlikely to 

leave behind extensive fluvial deposits. The distinct “floor” of fluvial features in the profile of 

the Kentucky River valley suggests an abrupt change in behavior of the river. Above the floor, a 

diverse array of paleochannels, fluvial terrace deposits, and bedrock benches is preserved (Figure 

67). No distinct, through-going valley profiles are readily traceable in the areas above the floor. 

Profile trends of paleochannels, fluvial deposits, and bedrock benches appear to closely parallel 

stratigraphic contacts, suggesting lithologic control of origin and preservation. Below the floor, 

the fluvial record is locally dominated by stratigraphically limited bedrock benches with few or 

no mapped fluvial deposits (Figure 67). 

The lack of discreet, traceable, graded profiles above the “floor” suggests that the river 

has undergone slow, steady erosion with no prolonged hiatuses while fluvial deposits and 

paleochannels above the floor developed. Adequate lateral erosion existed to allow for 

deposition and preservation of fluvial deposits, but enough vertical erosion was active to 
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continually incise the river valley without producing unique graded profiles of fluvial features. 

The lack of fluvial deposits and presence of only limited bedrock benches, below the “floor” 

suggests that vertical bedrock erosion was the dominant process, and sediment was quickly 

swept from the system and not preserved as fluvial deposits or terraces. The bedrock benches 

below the floor represent limited lateral erosion in the Gratz and Palmer morphology styles 

which are optimum for (1) developing and (2) preserving those features. The “floor” of the 

fluvial deposits, thus, represents a change in behavior of the river from slow, steady vertical-and-

lateral erosion to rapid vertical incision.  

At the downstream end of the “floor,” fluvial deposits have been mapped by Swadley 

(1971) in meandering Old Kentucky River paleovalleys with a northward graded bedrock strath. 

Granger (personal communication, 2001) dated the Old Kentucky River fluvial deposits near 

Carrollton at 1.36 to 1.43 Ma. These southerly derived fluvial sediments are overlain by 

lacustrine deposits, which in turn are overlain by northerly derived glacial outwash and drift. 

This sequence of deposits is comparable to those found in the Teays River and Old Licking River 

valleys. These sedimentary sequences represent the youngest vestiges of the Teays River system, 

and represent the sequence of events coeval with the abandonment of the Teays and integration 

of the early Ohio River. The upstream end of the “floor” corresponds to the older spillway outlet 

along Upper Howards Creek. The spillway represents spillover of glacially impounded water 

from the Licking River valley. The coincidence of the two glacially related events along the 

“floor” at opposite ends of the valley profile supports the hypothesis that the two events are 

coeval and genetically related. The projection of the Salt River capture near Lawrenceburg to 

very near the “floor” suggests that the capture and overflow from the Kentucky River into the 

Salt River valley was contemporaneous. 

The “floor” of fluvial deposits in the profile of the Kentucky River valley, thus, probably 

represents the approximate profile of the river just prior to the integration of the early Ohio 

River, and the abandonment of the Teays River system. The new drainage organization provided 

a much shorter flow path to the vicinity of Cairo, Illinois (Figure 79). The flow from Carrollton 

through the Teays system to Cairo was roughly 1200 km, whereas the route down the early Ohio 

was only about 600 km. The level of drainage systems at Cairo remained unchanged, while the 

route of Kentucky River flow to that point was shortened by roughly half the distance. As 

discussed above, the “floor” of fluvial features represents the onset of rapid bedrock incision of 
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the Kentucky River. The “floor” is associated with glacial deposits that are inferred to 

correspond to the disruption of the Teays River and the organization of the early Ohio River. 

When the Kentucky River flow was rerouted from the Teays River system into the newly formed 

Ohio River system, the elevation difference to Cairo was the same, but the distance was cut 

approximately in half (Figure 80). The profile of the modern Ohio River and the modern 

Kentucky River, as measured from Cairo, closely parallels the profile of the Teays River 

measured from the same point. The Kentucky River incision corresponds very well with the 80 

to 100 meters of incision required to adjust the Old Kentucky River to a position 600 km closer 

to the Cairo along the Teays River valley. Thus, the Kentucky River is inferred to have incised to 

its currently level in response to the drainage reorganization of the Teays River system into the 

Ohio River system. The available geochronology does not constrain the rate of incision, or 

whether a knickpoint migrated up the river. If the younger Licking River spillway, which is 12 

meters lower than the older one, represents a second phase of the same pre-Illinoisan glaciation 

that reorganized the regional drainage, it suggests rapid incision within a comparable glacial 

cycle. Such very rapid stepped incisions are compatible to the punctuated incision Granger and 

others (2001) identified at Mammoth Cave (Figure 84). 

Illinoisan and Wisconsin Alluviation 

Illinoisan drift has been identified along the flanks of the modern Ohio River valley, 

suggesting that most of the modern bedrock valley morphology was in place by the onset of 

Illinoisan glaciation roughly 180 ka. The Illinoisan drift plug at the mouth of the Kentucky River 

near Carrollton, and the Illinoisan drift overriding the pre-Illinoisan in the upland nearby 

suggests that a substantial thickness of Illinoisan ice reached at least as far south as the mouth of 

the Kentucky River valley. The convex and irregular profile of the buried bedrock valley of the 

Kentucky River downstream from Frankfort suggests that bedrock incision had not yet reached 

an ideal concave profile, and thus was still active when it was interrupted by alluviation 

associated with the Illinoisan glaciation. A series of valley-bottom terraces above the active flood 

zone, well up-valley from the better-documented Wisconsin terraces (Figure 58), may illustrate 

lacustrine deposition associated with Illinoisan impoundment of the Kentucky River valley. On 

the basis of the distribution of Ohio River valley deposits assigned to the Illinoisan, the Illinoisan 

glaciation would most likely have reactivated the spillways between the Licking, Kentucky, and 
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Salt River basins by impounding the flow from those basins. Geochronologic data do not 

currently exist to confirm or deny this. 

Wisconsin glaciers did not reach northern Kentucky, but their effects have been noted in 

the lower reaches of the Kentucky River valley (Kane, 1972). The Wisconsin glaciation 

produced a sediment-choked outwash valley-train deposit in the Ohio River valley. The high 

flow volumes and rapid alluviation associated with this valley train led to shallow impoundment 

of tributary valleys. The maximum elevation of Wisconsin terrace deposits in Ohio River valley 

near Carrollton is approximately 152 m (500 ft). Spillover of high-suspended-load water from 

the outwash flows into the mouths of tributary valleys led to the deposits of ubiquitous silty 

clays, commonly refered to as “blue clay,” in the bottoms of most tributary valleys (Ray, 1974; 

Kane, 1972). A series of terraces at 149 to 152 m (490 to 500 ft) in elevation extends up the 

Kentucky River valley as far as the mouth of Elkhorn Creek, where they merge with the active 

terraces of the modern river. The levels of the tributary-mouth lakes thus formed would have 

fluctuated with the magnitude of outwash flows in the main Ohio River valley. Although less 

data exist for the Illinoisan, the older glaciation should have had similar effects when the ice was 

not at its maximum extent and Illinoisan outwash was flowing down the Ohio River valley. 

Reconciliation of Erosion Rate Estimates 

The incision history inferred by this study and the limited geochronological data available 

provide limits on erosion rates and rates of landscape evolution in the study area. The estimated 

overburden across the Cincinnati arch (450 to 700 m) has been removed since the end of 

deposition of the Alleghanian clastic wedge in eastern Kentucky, which occurred 250 to 290 Ma. 

This results in an average upland erosion rate of 1.6 to 2.8 m/m.y. for the study area since late 

Paleozoic time. Integrating regional fluvial incision of 50 to 150 m into this calculation suggests 

long-term average fluvial incision rates of 1.7 to 3.4 m/m.y. over the same time period. 

The observations of this study, however, are limited primarily to Plio-Pleistocene 

deposits, on the basis of the limited cosmogenic isotope dating available for the study area. The 

published and unpublished dates (Granger and Smith, 2000; Granger, personal communication, 

2001) for the Irvine Formation at Rice Station (ele. 275 m) range from 1.8 to 1.5 Ma, and the 

burial ages of the Old Kentucky River fluvial sediments near Carson range from 1.3 to 1.45 Ma 

(Granger, personal communication, 2001). The valley is inferred to have incised 90 to 100 m 
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after deposition of the Old Kentucky River sediment and prior to the onset of Illinoisan 

glaciation (0.15 to 0.18 Ma). This yields average fluvial incision rates of 69 to 98 m/m.y. during 

most of the Pleistocene at Carson. At Rice Station, a cosmogenic production model age of 1.5 to 

1.8 m.y. since deposition of the Irvine Formation, with 110 to 120 m of bedrock erosion prior to 

the Illinoisan glaciation (Figure 86). This yields average fluvial erosion rates of 67 to 91 m/m.y. 

at Rice Station, strikingly comparable to the rates estimated downstream at Carson. 

The projected grade of the Old Kentucky River deposits (the “floor” of fluvial features, 

projected from the Carson site through the upper/older spillway outlet at Upper Howards Creek) 

is 30 to 35 m below the bedrock strath of the Rice Station deposit (Figure 86). The uncertainties 

in age estimates (1.8 to 1.5 Ma for Rice Station, 1.3 to 1.45 Ma for Carson and the “floor”) yield 

estimated average fluvial erosion rates of 50 to 700 m/m.y. The highest values are extreme in the 

context of this study and other incision estimates in the region, and are considered unrealistic; the 

lower values are slightly lower than the estimates for the entire valley. More precise age 

estimates are thus necessary to constrain Late Pliocene to Early Pleistocene (1.8 to 1.2 Ma) 

erosion rates in the study area. 

Whereas the preservation of fluvial features and deposits suggests a sudden and dramatic 

shift in erosion rate/style at 1.3 to 1.45 Ma, the limited and low-resolution geochronologic data 

currently available do not conclusively resolve any change in erosion rates within fluvial 

deposits observed in this study. However, the difference in estimated fluvial erosion rates since 

1.8 Ma (67 to 98 m/m.y.) versus since 250 Ma (1.7 to 3.4 m/m.y.) suggest that erosion rates were 

not constant through time in this area. Restoration of the estimated removed overburden (450 to 

700 m) with the estimated Plio-Pleistocene erosion rates (67 to 98 m/m.y.) suggests that fluvial 

erosion could have produced the observed denudation and incision in 4.6 to 12.7 m.y. Fission-

track dating of eastern Kentucky sandstones suggests that uplift/denudation in the region has not 

been uniform through time, and that an acceleration of uplift/denudation began at 50 to 30 Ma 

(Figure 79) (Boetcher and Milliken, 1994; Hulver, 1997). The presence of Cretaceous through 

Eocene (ca. 70 to 45 Ma) marine and marine-marginal sediment in far western Kentucky (Olive, 

1980) suggests that the region had not undergone significant regional uplift until after the 

Eocene. If uplift and major fluvial incision in the Kentucky River valley began only at 30 to 50 

Ma, then erosion rates over that time period would be 10 to 28 m/m.y. A plausible hypothesis 

that remains to be tested, but is beyond the scope of this study, is that fluvial erosion rates 
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remained low (<10 m/m.y.) from late Paleozoic until mid-Tertiary time, and then accelerated (10 

to 100 m/m.y.) to produce the modern landscape. Currently visible topographic features would 

be no older than Pliocene in age in this scenario. 

Controls on Fluvial Evolution 

Lithologic Control 

This study has documented lithologic control as the dominant control on landform 

evolution in the Kentucky River valley. Variations in drainage density correspond to different 

bedrock lithologies (Figure 23). The distribution of abandoned meanders and the morphology of 

paleochannels correspond to the bedrock geology. Although most knickpoints are not directly 

associated with bedrock geology, two prominent knickpoints in the Kentucky River valley, one 

at Lock and Dam No. 4, and one at 105 km on the Red River, correspond to underlying lithology. 

Contributing drainage area is the dominant factor in determing the distance of knickpoints from 

the main Kentucky River valley, but that relationship is modified by lithologic control (Figure 

33).  

This study documented lithologic control on valley morphology, and identified eight 

distinct valley morphology styles in the study area (Figures 41, 42). These styles correspond to 

the dominant bedrock lithology in the valley walls, and are controlled by the shale content and 

bedding thickness of the bedrock. Shale content and bedding thickness control the lateral and 

vertical erodibility of bedrock units. The distribution of high-level fluvial deposits in the 

Kentucky River valley corresponds to the valley morphology styles suggested by bedrock 

stratigraphy.  

Relict Landforms and Inheritance 

Some of the landforms in the study area represent past events that are no longer active, 

but even the inherited landforms are dependent on bedrock lithology for preservation. Wisconsin 

alluviation of the Ohio River resulted in slackwater deposition in the lower Kentucky River 

valley. A series of terraces near the mouth of the river at approximately 150 m, well above the 

modern flood zone, represent the top of the lacustrine deposits. Illinoisan ice may have also 

impounded the river, and led to deposition of terraces above the modern flood zone well 
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upstream. Post-glacial (Holocene) erosion by the stream has not yet reworked or destroyed these 

deposits. 

The paleochannels associated with the high-level fluvial deposits represent abandoned 

ancient meanders of the river. The development of these high-level abandoned meanders was 

controlled by bedrock stratigraphy in the same manner as the valley-bottom meanders. Bedrock 

benches represent fragments of stream-cut straths as the river meandered while incising the 

valley. The benches are preserved only on lithologies that are sufficiently resistant to lateral 

erosion to inhibit the undercutting of the benches by subsequent meander migration. These 

benches are not preserved along sections of the valley dominated by shaly litholgies and the 

associated colluvial slope processes. 

The entrenched, symmetrical meanders in the Wilmore valley morphology style were 

inherited from overlying valley morphology styles more conducive to the development of broad, 

rounded meanders, as in the Gratz style (Figure 73). As the river eroded from the Gratz style into 

the underlying, more resistant lithologies, the meanders were superposed onto the subjacent 

rocks. The high resistance of the rocks in the Wilmore and Tyrone styles preserves the meander 

pattern by preventing lateral erosion from modifying or destroying the superposed meanders. 

Glaciation and Drainage Reorganization 

Glaciation and associated drainage changes had significant and abrupt impacts on the 

evolution of the Kentucky River. Swadley (1971) documented reversal of flow in the Old 

Kentucky River associated with a pre-Illinoisan glaciation. This glaciation led to destruction and 

abandonment of the Teays River system and the establishment of the integrated Ohio River 

system. This resulted in the abandonment of the Old Kentucky River paleovalleys. The drainage 

reorganization resulted in a shortening of the longitudinal profile of the Kentucky River, and 

subsequent incision is related to the adjustment of the Ohio and Kentucky Rivers to the new 

profile. Most of the high-level fluvial deposits and paleochannels preserved in the Kentucky 

River valley were formed prior to the onset of rapid adjustment and incision of the Kentucky 

River. The incision of the river was either uniformly rapid, or accomplished by a knickpoint 

migrating quickly up the main valley. Knickpoints in tributaries to the Kentucky River do not 

show any relationship to the distance from the mouth of the Kentucky River that would suggest 

slow migration of a knickpoint upstream. 
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The pre-Illinoisan glaciation that destroyed the Teays River also resulted in slackwater 

impoundment of the Licking River and the rest of the drainage area upstream from the Kentucky 

River. This extensive lake rapidly filled and spilled over the divide into the Kentucky River 

valley near Levee in Montogomery County. As the weight of the ice sheet slowly depressed the 

lithosphere, the distal spillway was abandoned in favor of other shorter lived spillways more 

proximal to the ice front. 

Implications for Landscape Evolution 

The primary implication of this study for considerations of landscape evolution in the 

study area is the dominance of bedrock lithology as a control on the distribution of landform 

patterns. The successful projection of modern valley morphologies into stratigraphically 

equivalent sections of the upland suggests that the association of landform patterns with large-

scale lithologic units persists through time. Large-scale lithologic units control the evolution of 

hillslope morphologies, erosion rates, and styles, and thus determine the characteristics of 

resulting valley morphology style. The concept that bedrock lithology controls landform 

development is by no means new, but this study affirms the pervasive—but not exclusive—

dominance of bedrock lithology in control of central Kentucky landscape evolution. Inheritance 

of older forms is a significant factor in the distribution of selected landforms or morphologies, 

but even the inheritance is an indirect reflection of bedrock lithology. The inherited landforms 

are preserved because of modification-limiting characteristics of the underlying bedrock, such as 

resistance to lateral erosion. 

The recognition of bedrock-controlled valley-morphology styles in a region of reasonably 

well-documented stratigraphy conceptually allows for a temporal and spatial reconstruction of 

landform patterns. By examining active landform processes along the profile of the modern 

stream, one can infer the progression of landform patterns through time. The along-stream 

progression of landforms would represent a series of landscape snapshots through time for a 

given point along the river. For example, an examination of karst landforms from the Worthville 

area to the Camp Nelson area potentially could illustrate the progressive development of karst 

landforms in the Palisades. 

The distribution and preservation of upland fluvial features supports the projection of 

valley morphology styles into the upland on the basis of enclosing stratigraphy. Preserved fluvial 
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features and deposits are consistent with modern analogs elsewhere in the valley in comparable 

stratigraphic positions. This suggests that the deposits formed and were preserved with enclosing 

valley morphologies and relief, similar to corresponding modern valley analogs. Numerous 

fluvial features and deposits in the study area are preserved just below the level of the modern 

ridgetops, suggesting projection of restored stratigraphy well above the surface of the modern 

hilltops (Figure 67). 

The reconstructed stratigraphy of the study area, supported by physical extrapolation, 

thermal maturity, and fission-track estimates, suggests between 450 and 700 m of overburden 

has been removed from the study area since late Paleozoic time, most of which probably was 

removed since late Tertiary time. The late Paleozoic fluvio-deltaic depositional surface remained 

little changed until mid-Tertiary time, when accelerated erosion and incision began to dissect the 

ancient landscape. The available fission-track dating studies in the area show relatively slow and 

uniform unroofing of the area, with accelerated unroofing since mid-Tertiary time. The evidence 

suggests a long period of Mesozoic and early Cenozoic stability, followed by accelerating 

erosion which has continued to the present. The erosion rates derived from this study (~60 to 100 

m/m.y.), and the limited overburden suggested by stratigraphic reconstruction and published 

thermal maturity studies, suggest a landscape that has evolved rapidly during late Tertiary and 

Quaternary time, inherited from an older landscape little changed since late Paleozoic and 

Mesozoic time. 

Summary and Conclusions 

This study utilized published geologic and topographic data, as well as field observations 

and extensive compilation and comparison of digital data, to examine the fluvial record 

preserved in the Kentucky River valley in central Kentucky. Numerous fluvial features including 

abandoned paleovalleys, fluvial terraces and deposits, bedrock benches, and relict spillways 

between adjacent river valleys were identified during the course of the study. 

This study developed a relative chronology for the evolution of the Kentucky River 

during the Pliocene and Pleistocene. The oldest preserved fluvial deposits, located near the 

modern upland summits, are approximately 2 My old or late Pliocene in age. The record of 

deposits and paleovalleys suggests slow steady erosion until an Early Pleistocene glacial 

advance. At that time, a glacier blocked the flow of the Kentucky and Licking Rivers into the 
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Teays River system, causing the flow to be incorporated into the newly reorganized Ohio River 

system. The Kentucky River incised its valley to accommodate the shorter flow distance 

produced by the drainage reorganization. The Illinoisan and Wisconsin glaciations caused 

impoundment of the Kentucky River and deposition of fine-grained slackwater sediment in the 

valley bottom. Holocene responses of the river to human activity were beyond the scope of this 

study. 

The morphology of the modern valley was examined, and eight separate zones of distinct 

geomorphic style were delineated along the modern Kentucky River valley. Bedrock lithology is 

the dominant control on valley morphology and, thus, on the distribution and preservation of 

fluvial deposits and features in the study area. Rock units vary in susceptibility to vertical and 

lateral erosion and in control on the style and relative dominance of colluvial processes active 

along the valley walls. 

Because valley morphology coincides with bedrock lithology, the modern valley 

morphology styles can be projected into the upland on the basis of similar bedrock stratigraphy. 

Modern and upland fluvial deposits and valleys in comparable lithologic contexts have 

developed comparable morphologies. The application of bedrock-controlled valley morphology 

can be a useful tool in resolving landscape evolution questions in this area. 

Some stream trends are inherited from the late Paleozoic drainage during the Alleghanian 

orogeny. The original drainage directions persisted through time, being only locally modified by 

captures and adjustments related to bedrock lithologic contrasts. More recent inheritance of 

valley morphology has resulted from the erosion of the river from one lithology down into 

another lithology with differing erosional susceptibility, thus superposing the meander patterns 

of the overlying valley style onto the underlying lithology. 

One major drainage reorganization has been recognized by previous workers, and 

confirmed in this study. An Early Pleistocene, pre-Illinoisan glacial advance (between 1.3 and 

0.8 Ma) disrupted the northward flow of the Old Kentucky River toward the Teays River system. 

This led to organization of the early Ohio River and a resulting southwestward flow of water 

from the Kentucky River through the Ohio River system. This greatly reduced the distance to 

base-level, and led to a change in erosional style for the Kentucky River. Erosion rate may have 

increased also, but the resolution of available geochronological data is insufficient to precisely 
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quantify rates. Stream captures and paleocourses previously hypothesized by Luft (1980, 1986) 

and Jillson (1963) are not testable in the current study; the record required to consider these 

questions has been removed by erosion. 

This study inferred limited eroded overburden in the study area, on the basis of 

stratigraphic extrapolation and published thermal maturity and fission-track data. The limited 

overburden implies very slow average upland erosion rates since the end of late Paleozoic 

deposition. Fission-track studies suggest fluvial erosion rates have apparently increased through 

time, consistent with the results of this study. 

The successful projection of valley morphologies on the basis of bedrock stratigraphy, 

the history of erosion suggested by fission track data and the results of this study, as well as soil 

thickness and development, all argue against the existence of a mid to late Tertiary, low-relief, 

regional erosional surface. This study instead hypothesizes that the apparent accordance of ridge-

top elevations in the study area is a reflection of a fluvially downwasted late Paleozoic 

depositional surface. 

Copyright © William Morton Andrews Jr. 2004
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APPENDIX 1 

USGS 7.5-minute Geologic Quadrangle maps utilized for this study 
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APPENDIX 2 

Digital data sets utilized in this study 
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Appendix 2. Digital data sets utilized in this study 
 
 

Theme Bedrock and quaternary geology 
Title Digitally Vectorized Geologic Quadrangles (DVGQ) 
Format vector, polygon/line/point 
Scale/resolution 1:24,000 
Database size (this study) 540 MB, Kentucky River basin 
Produced by Kentucky Geological Survey 
Acquired from Kentucky Geological Survey 
Website http://www.uky.edu/KGS 

 
 

Theme Land-surface elevation 
Title Digital Elevation Model (DEM) 
Format raster/grid 
Scale/resolution 10 meter 
Database size (this study) 280 MB, Kentucky River basin 
Produced by U.S. Geological Survey 
Acquired from Kentucky Office of Geographic Information Systems 
Website http://ogis.state.ky.us 

 
 

Theme Land-surface elevation 
Title Shuttle Radar Topography Mission (SRTM) 
Format raster/grid 
Scale/resolution 90 meter 
Database size (this study) 325 MB, Illinois, Indiana, Kentucky, West Virgina 
Produced by National Aeronautics and Space Administration 
Acquired from U.S. Geological Survey 
Website http://srtm.usgs.gov 

 
 

Theme Topographic maps 
Title Digital Raster Graphic (DRG) 
Format image 
Scale/resolution 1:24,000 
Database size (this study) approx. 1,440 MB, Kentucky River basin 
Produced by U.S. Geological Survey 
Acquired from Kentucky Office of Geographic Information Systems 
Website http://ogis.state.ky.us 
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Theme Soils 
Title Soil Survey Geographic database (SSURGO) 
Format Vector, polygon/point 
Scale/resolution 1:12,000 
Database size (this study) 240 MB, Kentucky River basin 
Produced by U.S. Department of Agriculture 
Acquired from U.S. Department of Agriculture 
Website http://www.ncgc.nrcs.usda.gov/branch/ssb/products/ssurgo/ 

 
 

Theme Streams 
Title National Hydrologic Dataset (NHD) 
Format Vector, line 
Scale/resolution 1:24,000 
Database size (this study) 40 MB, Kentucky River basin / 164 Mb statewide 
Produced by U.S. Geological Survey 
Acquired from U.S. Geological Survey 
Website http://nhd.usgs.gov/ 
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APPENDIX 3 

Comparison of different measures of distance in the Kentucky River valley 
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Appendix 3. Comparison of different measures of distance in the Kentucky River valley 
 

Feature USACoE 
mi 

USACoE 
km 

NHD 
mi 

NHD 
km 

Valley 
mi 

Valley 
km 

Lock and Dam No 1 4.0 6.4 4.3 7.0 3.7 6.0 
Mouth of Eagle Creek 11.0 17.7 11.6 18.6 9.5 15.3 
Mouth of Big Twin Creek 17.4 28.0 18.1 29.2 14.9 24.0 
Mouth of Drennon Creek 21.0 33.8 21.9 35.3 17.8 28.7 
Lock and Dam No 2 31.0 49.9 32.2 51.9 25.2 40.6 
Mouth of Sixmile Creek 31.1 50.0 32.3 52.0 25.3 40.8 
Mouth of Severn Creek 35.8 57.6 37.0 59.5 28.2 45.4 
Mouth of Cedar Creek 41.8 67.3 42.8 68.8 31.8 51.2 
Lock and Dam No 3 42.0 67.6 43.1 69.3 32.0 51.5 
Mouth of Flat Creek 48.4 77.9 49.7 80.0 37.3 60.1 
Mouth of Elkhorn Creek 51.9 83.5 53.4 86.0 40.4 65.0 
Lock and Dam No 4 65.0 104.6 67.2 108.2 49.8 80.2 
Mouth of Benson Creek 65.8 105.9 68.0 109.5 50.5 81.2 
Mouth of Glenns Creek 71.4 114.9 73.8 118.7 54.7 88.1 
Lock and Dam No 5 82.2 132.3 84.5 136.0 63.8 102.6 
Mouth of Bailey Run 84.6 136.1 86.9 139.9 65.7 105.8 
Mouth of Grier Creek 85.5 137.6 87.9 141.5 66.6 107.3 
Mouth of Gilbert Creek 89.7 144.3 92.4 148.7 70.6 113.6 
Mouth of Clear Creek 94.7 152.4 97.7 157.2 74.3 119.7 
Lock and Dam No 6 96.2 154.8 99.4 159.9 75.7 121.9 
Lock and Dam No 7 117.0 188.3 120.2 193.4 93.7 150.9 
Mouth of Dix River 118.2 190.2 121.4 195.3 94.9 152.7 
Mouth of Jessamine Creek 127.4 205.0 130.7 210.3 103.8 167.0 
Kentucky River at Camp Nelson 135.1 217.4 138.1 222.2 110.7 178.2 
Mouth of Hickman Creek 135.3 217.7 138.7 223.2 111.3 179.2 
Lock and Dam No 8 139.9 225.1 143.4 230.7 115.2 185.5 
Mouth of Sugar Creek 142.6 229.4 146.3 235.4 117.9 189.8 
Mouth of Paint Lick Creek 146.0 234.9 149.6 240.8 120.9 194.5 
Mouth of Silver Creek 150.3 241.8 154.0 247.8 124.6 200.6 
Lock and Dam No 9 157.9 254.1 161.4 259.8 131.6 211.9 
Mouth of Tates Creek 158.1 254.4 161.9 260.6 132.3 212.9 
Mouth of Boone Creek 170.6 274.5 174.8 281.3 144.3 232.2 
Mouth of Lower Howard Creek 174.6 280.9 178.9 287.9 148.3 238.7 
Lock and Dam No 10 176.4 283.8 180.7 290.9 150.1 241.5 
Mouth of Otter Creek 177.3 285.3 181.6 292.2 150.8 242.8 
Mouth of Twomile Creek 179.3 288.5 183.8 295.8 152.7 245.8 
Mouth of Fourmile Creek 180.4 290.3 184.8 297.5 153.7 247.4 
Mouth of Muddy Creek 184.8 297.3 189.4 304.9 157.8 253.9 
Mouth of Upper Howard Creek 187.2 301.2 191.9 308.9 159.9 257.4 
Mouth of Red River 190.8 307.0 195.6 314.8 162.5 261.5 
Lock and Dam No 11 201.0 323.4 205.9 331.4 171.0 275.3 
Mouth of Drowning Creek 205.1 330.0 210.0 338.0 174.0 280.1 
Mouth of Station Camp Creek 218.5 351.6 223.4 359.6 185.1 297.9 
Lock and Dam No 12 220.9 355.4 226.0 363.7 187.0 300.9 
Mouth of Cow Creek 221.2 355.9 226.2 364.1 187.3 301.4 
Mouth of Millers Creek 225.8 363.3 230.7 371.3 190.6 306.7 
Lock and Dam No 13 239.9 386.0 244.8 393.9 203.7 327.9 
Mouth of Sturgeon Creek 248.7 400.2 253.7 408.3 212.2 341.5 
Lock and Dam No 14 249.0 400.6 253.9 408.7 212.4 341.8 
Confluence of North and South 
Forks 

254.8 410.0 259.7 418.0 217.7 350.3 
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APPENDIX 4 

Flood frequency for the Kentucky River calculated by the U.S. Army Corps of Engineers 
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