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Compositional Variations in the Fire Clay
Coal Bed of Eastern Kentucky: Geochemistry,

Petrography, Palynology, and Paleoecology

Cortland F. Eble 1, James C. Hower 2, and
William M. Andrews Jr. 1

ABSTRACT
Bench samples of the Fire Clay coal bed, collected from 28 localities in a study area of eight 7.5-minute

quadrangles in the Eastern Kentucky Coal Field, were analyzed geochemically, petrographically, and palyno-
logically to determine any spatial or temporal trends among the studied parameters.

At most sample sites the Fire Clay is split by a flint-clay parting of probable volcanic origin. The upper
bench of the Fire Clay coal generally is thick, laterally continuous, low in ash yield and sulfur content, has a
moderate to high calorific value, and is high in total vitrinite content. In contrast, the lower bench generally is
thin, laterally discontinuous, moderate to high in ash yield and sulfur content, has a low to moderate calorific
value, and has high liptinite and inertinite contents. Rider coals, present at two sample sites, are thin, laterally
discontinuous, and high in both ash yield and sulfur content.

Fire Clay coal extracted from underground mines typically contains roof and floor rock, which is separated
by conventional coal-cleaning methods. The analytical data were grouped into categories of increasing coal
purity to approximate a cleaned coal product. Results indicate that some parameters (Btu and total vitrinite
content) increase along a trend from higher ash to lower ash coal. Other parameters (ash yield, total sulfur
content, and several minor elements) decrease. Still others (thickness and total moisture) show no trend at all.
A comparison of these data with previously accumulated data from 64 cleaned coal samples (collected from
preparation plants) confirms these trends. This is significant, especially with regard to Titles III and IV of the
Clean Air Act Amendments of 1990, in that many deleterious components of coal appear to be removable by
conventional coal-cleaning methods prior to combustion in an industrial furnace. Examples of these undesir-
able constituents include pyrite, chromium, cobalt, and nickel.

The Fire Clay coal was grouped into four compositional categories for paleoecological interpretation. The
categories are (1) a Lycospora-dominant group with high vitrinite contents that is interpreted to have formed in
areas of the Fire Clay paleomire that were kept very wet, to the point of having standing water, a majority of the
time (this group probably developed in areas of the mire that were dominantly rheotrophic and planar); (2) a
mixed-palynoflora group with high vitrinite contents that is defined by having a more diverse palynoflora  than
the first group (increased percentages of small lycopsid, fern, and calamite spores), and high percentages of
vitrinite (this group is also interpreted to have formed in areas that were very wet most of the time, and were
predominantly rheotrophic and planar); (3) a mixed-palynoflora group with moderate to low vitrinite contents
that contains increased percentages of inertinite compared to the first two groups and a diverse palynoflora,
possibly because the mire became more ombrotrophic and domed; and (4) a mixed-palynoflora group with
high ash yield whose palynoflora is marked by various mixtures of lycopsids (trees and small forms), ferns
(tree-like and small forms), calamites, and cordaite spores; samples defined by this group contain elevated
percentages of liptinite and inertinite macerals, as well as higher ash yields. The conditions under which group
4 formed probably were rheotrophic and planar. Group 4 defines all the samples in the lower bench of the Fire
Clay coal bed.

1 Kentucky Geological Survey, University of Kentucky. William Andrews worked at the Center for Applied Energy Research while he was
conducting research for this report.
2 Center for Applied Energy Research, University of Kentucky.
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INTRODUCTION
The Appalachian coal region extends through 10 states

along the eastern margin of the United States, from northeast
Pennsylvania to central Alabama and eastern Mississippi, a
distance of some 1,380 km (Fig. 1). The Fire Clay coal bed
occurs in a part of this area known as the Eastern Kentucky
Coal Field. Correlatives of the Fire Clay coal have been iden-
tified in adjacent states, including West Virginia and Tennes-
see (Chesnut, 1985; Lyons and others, 1992). Stratigraphically,
it occurs in the middle part of the Breathitt Group, is mid-
Middle Pennsylvanian in age, and correlates with the Upper
Morrowan Series of the Eastern Interior (Illinois) Basin and
the upper Westphalian B of western Europe (Fig. 2). The Fire
Clay is an areally extensive, mineable coal resource in the
Eastern Kentucky Coal Field. In 1992, approximately 23.6
million short tons of Fire Clay coal was produced, making it
the second most heavily mined coal bed in Kentucky, accord-
ing to the Kentucky Department of Mines and Minerals. Re-
serve estimates suggest that it should continue to be a major
producer for years to come.

This detailed geologic investigation of the Fire Clay coal
bed covers an area of eight 7.5-minute quadrangles in the
Eastern Kentucky Coal Field (Fig. 3). Vertically continuous,
small-scale (less than 0.2 m thick) bench samples were col-
lected from 28 locations in the study area, and were analyzed
geochemically (for proximate and ultimate analysis and to
determine sulfur, calorific value, major element oxides, and
12 minor elements), petrographically, and palynologically to
detect any spatial and temporal (vertical, within-bed) trends
among these parameters. Although a majority of the samples
were collected from active underground mines, samples were
also collected from abandoned surface-mine highwalls and
highway outcrops. An effort was made to collect from areas
of thick (greater than 1 m) and thin (less than 1 m) outcrops to
document any compositional changes related to bed thick-
ness. Figure 4 is an isopach map of the Fire Clay coal bed in
the Eastern Kentucky Coal Field showing generally thicker,
more laterally continuous coal in the southeastern parts of the
coal field, and thinner, more laterally discontinuous coal in
the northwest.

A study of this detail and magnitude is both time-consum-
ing and costly, especially in terms of analytical expenses. Per-
haps the most important reason for this study was to form a
foundation for future work on the Fire Clay and other Ken-
tucky coal beds. Data acquired from this work will be used to
determine the level of detail needed for future sampling pro-
grams. This will expedite the completion of future programs,
and keep analytical costs to a minimum.

Fire Clay Coal Project
This is the first in a series of three publications concerning

the Fire Clay coal. The second publication is a summary of
the geology of the Fire Clay coal, and especially deals with
coal thickness and roof geology trends in a 15-quadangle study
area that includes the eight-quadrangle study area of this re-
port (Greb and others, in press b). The third is a study of the
available Fire Clay coal resources in the same 15-quadrangle
study area as the second report (Greb and others, in press a).
These three studies were coordinated in order to determine
factors important to future coal development.

PREVIOUS INVESTIGATIONS
The Fire Clay coal bed has received a great deal of study,

primarily because of its flint-clay parting. Flint clay is a hard
claystone that typically breaks with a conchoidal fracture. It
is composed of a microcrystalline to cryptocrystalline kaolin-
ite matrix and lesser amounts of quartz, sanidine, rutile, zir-
con, and other accessory minerals (Hoehne, 1957; Patterson
and Hosterman, 1962; Huddle and Englund, 1966; Chesnut,
1985; Keiser and others, 1987; Belkin and Rice, 1989; Lyons
and others, 1992; Hower and others, 1994). Although most
investigations have suggested the parting, which has been
dated at approximately 311 million years, is of volcanic ori-
gin (Ashley, 1928; Nelson, 1959; Seiders, 1965; Robl and
Bland, 1977; Stevens, 1979), at least one study (Tankard and
Horne, 1979) points toward a detrital origin for the parting. A
comprehensive review by Chesnut (1985) concludes that the
majority of the evidence favors a volcanic origin.

We recommend collecting samples on a bench scale, which provides more detailed information than a set of
full-channel samples. The additional information gained from bench samples might allow a surface-mine op-
erator to selectively mine superior coal and isolate parts of a coal bed that are of inferior quality. This type of
sampling is most beneficial when done using drill cores taken in advance of mining, because the thickness and
quality of individual benches can be determined, mapped, and planned prior to mining.

We recommend that when the Fire Clay coal bed is being mined in the eight-quadrangle study area, the
bottom bench be left and mining should be confined to the upper bench. The results of this study clearly
indicate that the lower bench is, with few exceptions, thin and of poor quality. The same is true for any rider
coals that may be present.

Introduction
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Palynologic studies of the Fire Clay coal are not uncom-
mon either. Studies from Kentucky include those of Kosanke
(unpublished U.S. Geological Survey paleontology and stratig-
raphy reports), Grosse (1979),  Helfrich (1981), and Unuigboje
(1987). Cross (1947) and Kosanke (1988) have reported on
the Fire Clay coal in neighboring West Virginia. Eble (1988)
and Eble and Grady (1990, 1993) studied the Fire Clay coal
bed in detail using samples that were collected in West Vir-
ginia and Kentucky. A report by Eble and others (1994) dis-
cusses the paleoecology of the Fire Clay coal bed in the present
study area. One other paper (Currens, 1981) discusses some
aspects of Fire Clay coal quality characteristics in the Eastern
Kentucky Coal Field.

MATERIALS  AND METHODS
Vertically continuous bench samples were collected from

28 localities in an area covering eight 7.5-minute quadrangles
(approximately 2,000 km2) of the Eastern Kentucky Coal Field
for combined geochemical, palynologic, and petrographic

analysis (Fig. 5). Benches were selected primarily on macro-
scopic appearance of the coal lithotypes. Thick intervals that
could not be distinguished lithologically were sampled in
benches not exceeding 0.2 m; most of the samples were less
than 0.15 m in thickness. All samples of inorganic layers (part-
ings) were collected separately. Full-bed-thickness channel
samples were also collected at 18 of the 28 locations using
the Holmes (1918) method, which excludes inorganic part-
ings greater than 1 cm thick. Three hundred thirty samples
were used for this study.

The samples were first reduced in size to –850 microme-
ters (µm) (–20 mesh) in accordance with American Society
for Testing and Materials (ASTM) standards (ASTM, 1992b).
Two splits, each weighing approximately 50 g, were removed
for palynologic and petrographic analysis. Two additional
splits were further reduced in size to –200 µm (–60 mesh) for
geochemical analysis in accordance with ASTM standards
(ASTM, 1992b).
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Figure 1. The position of coal-bearing strata in the Appalachian region, an area that extends through 10 states in the
east-central United States (white area).
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All samples were submitted for proximate
(as-determined moisture, volatile matter, fixed
carbon contents, and ash yield), total sulfur,
sulfur forms (sulfatic, pyritic, organic), and X-
ray fluorescence (major oxide and minor ele-
ment determination) analyses, as well as for
the determination of 12 minor element concen-
trations (Mo, Mn, Zn, Rb, Cu, Sr, Ni, Zr, Co,
Cr, Ba, and V). Coal samples (increment and
full-channel) were subjected to ultimate (el-
emental carbon, hydrogen, nitrogen, and oxy-
gen contents) and calorific value (Btu) analy-
ses. Tests to determine chlorine, free-swelling
index, vitrinite reflectance, and ash fusion tem-
peratures (reducing environment) were per-
formed only on full-channel samples.

All analyses provided technical and scien-
tific information about the physical and chemi-
cal composition and combustion properties of

coal. For example, coal-burning electric utilities routinely re-
quire analytical data on the moisture, ash yield, total sulfur
content, calorific value, chlorine content, and ash-fusion tem-
perature of the coal they burn. This allows them to determine
(1) how much coal will have to be burned to achieve a desired
furnace temperature (moisture content, calorific value), (2)
how much ash will be generated and disposed of (ash yield),
(3) how much corrosion of the boiler should be expected (chlo-
rine content), and (4) if ash must be removed from the boiler
in a solid or liquid state (ash-fusion temperature). Likewise,
Hardgrove grindability index is used by electric utilities to
determine whether or not a particular coal can be used in their
pulverized air-injection furnaces. In the steel industry, free
swelling index is an important parameter when coal is heated
in pressurized ovens and converted to coke. Determination of
element concentrations by ultimate analysis and X-ray fluo-
rescence is especially important with the implementation of
the Clean Air Act Amendments of 1990, which may require
the monitoring of several elements normally found in bitumi-
nous coal.

Palynologic analyses were performed on 16 bench samples
in order to determine the ancient flora whose remains (plant
litter) gave rise to the Fire Clay coal bed.

Isolation of the fraction from coal followed procedures
outlined by Barss and Williams (1973) and Doher (1980),
with minor modifications to achieve the most satisfactory re-
sults. Five grams of –20-mesh coal were oxidized in Schulze’s
solution (nitric acid saturated with potassium chlorate), di-
gested in 5 percent potassium hydroxide, concentrated in a
zinc chloride solution (specific gravity, 1.8), and stored in
ethylene glycol monoethylene (2-ethoxyethanol). Two hun-
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dred fifty spores were counted from Canada
balsam mounts to record the relative propor-
tions of the various taxa in each sample.

All the increment and full-channel coal
samples were petrographically analyzed. Coal
is made up of components called macerals
(Table 1). Macerals are to coal what minerals
are to rocks. There are three major maceral
groups in bituminous coal: vitrinite, liptinite,
and inertinite. They are differentiated based on
degree of reflectance in incident light. Vitrinite
macerals, which are medium gray in reflected
light, represent coalified stem and root tissues
(mainly wood and bark), and typically are the
dominant macerals (more than 60 percent) in
Kentucky coal. The vitrinite macerals telinite
and telocollinite are large (generally greater than
50 µm in diameter); in addition, telinite pos-
sesses discernable cellular structure. These two
macerals are sometimes referred to as “struc-
tured vitrinites.” In contrast, the maceral
vitrodetrinite consists of small (generally less

than 20 µm in diameter), disaggregated pieces
of vitrinite. Gelocollinite is an amorphous
form of vitrinite whose origin is primarily
owed to partial degradation of the original
plant litter. Quite often, vitrodetrinite and
gelocollinite occur together as a mixture, and
are called desmocollinite. Vitrodetrinite,
gelocollinite, and desmocollinite, sometimes
referred to as “unstructured vitrinites,” are
indicative of accelerated levels of biodegra-
dation. Corpocollinite is the term used to de-
scribe ovoid pieces of vitrinite of varying size.
These bodies are the fill of cellular cavities.

Liptinite macerals are dark brown to black
in reflected light, and are mainly derived from
hydrogen-rich plant parts such as spores and
pollen, cuticles, and resins. With a few ex-
ceptions, the individual maceral names are
self-descriptive. For example, sporinite is
coalified spores and pollen, cutinite is coali-
fied cuticles, resinite is coalified resins, and
so on. Liptodetrinite consists of small frag-
ments of liptinite that are too disaggregated
to assign to another liptinite maceral.

Inertinite macerals are white to white-yel-
low in reflected light, and are derived from
previtrinite plant components that have be-
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Figure 4. Thickness of the Fire Clay coal bed in eastern Kentucky. Modified
from Brant and others (1983).
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locations marked by black squares have both full-channel and bench
samples. Sample locations marked by white squares have bench samples
only.

Materials and Methods



6

Maceral 
Group

Maceral Description

Telenite (well preserved)
Structured vitrinite with visible cellular 
detail; positive relief after etching

Telenite (poorly preserved)
Structured vitrinite lacking cellular 
detail; positive relief after etching

Vitrinite Corpocollinite
Ovoid bodies representing cell 
fillings; positive relief after etching

Gelocollinite
Unstructured groundmass vitrinite; 
negative relief after etching with 
brown-black color

Vitrodetrinite
Small fragments of unstructured 
vitrinite; positive relief after etching

Sporinite Spores and pollen
Cutinite Cuticles

Liptinite Alginite Algae
Resinite Resins
Liptodetrinite Unidentifiable liptinite fragments
Fusinite Strongly oxidized previtrinite tissues

Semifusinite
Moderately oxidized previtrinite 
tissues

Inertinite Macrinite Oxidized cell fillings

Micrinite
Coalification by-product of liptinites 
(mainly)

Sclerotinite Oxidized cell walls of fungi (in part)
Inertodetrinite Unidentifiable inertinite fragments

Table 1. Breakdown of macerals in bituminous coal (after Pierce and 
others, 1991).

Thickness 
(ft)

Ash Yield 
(%, dry)

Total Sulfur 
(%, dry)

Btu (dry)
Vitrinite 
(mmf)

Liptinite 
(mmf)

Inertinite 
(mmf)

Average 2.64 7.95 0.93 13,732 75.6 8.0 16.4
Maximum 4.49 24.06 1.79 14,313 90.7 20.6 26.6
Minimum 1.0 4.13 0.43 12,731 57.8 4.1 5.2

Table 2. Average, maximum, and minimum values for selected parameters in the upper 
bench of the Fire Clay coal bed in the study area (n=27).

come oxidized, either by fire or the activity of fungus and
bacteria. Fusinite and semifusinite are large pieces of inertinite,
fusinite being the higher reflecting of the two. Macrinite has a
concentric shape and is composed of highly oxidized humic
gels. Micrinite particles are extremely small (less than 10 µm
in diameter), and look like fine grains of sand or salt dispersed
among other macerals. They are believed to be primarily the
result of liptinite diagenesis during coalification. Sclerotinite
owes its origins to fungal activity in the ancient peat.
Inertodetrinite is small, fragmented pieces of inertinite.

Maceral percentages for each sample are based on a count
of 1,000 points from two pellets in incident light (ASTM,
1992a). Maceral
terminology fol-
lows that pre-
scribed by ASTM
(1992a). Bench
samples from se-
lected sample sites
were etched in an
acidified potas-

sium permanganate solution to make
vitrinite macerals more discernable
(Mackowsky, 1974; Moore and
Stanton, 1985). This was done to de-
termine any vertical or lateral trends
among the vitrinite macerals. Termi-
nology for vitrinite macerals deter-
mined on etched surfaces follows that
of Pierce and others (1991). These
vitrinite macerals carry the prefix
“crypto.”

RESULTS
In the study area the widespread

flint-clay parting naturally divides the
Fire Clay coal into an upper bench and
a lower bench that are disparate in dis-
tribution, appearance, and composi-
tion. The upper bench generally is
thick (avg 2.64 ft, n=27), laterally con-
tinuous, mainly composed of bright
clarain, and typically is low in ash
yield (avg 7.95 percent, dry basis) and
sulfur content (avg 0.93 percent, dry
basis). Its calorific value (avg 13,732
Btu/lb) generally is higher than for the
lower bench. Petrographically, the up-
per bench contains high percentages
of vitrinite macerals (avg 75.6 percent,
mineral matter free [mmf]), and rela-
tively low to moderate amounts of
liptinite (avg 8.0 percent, mmf) and

inertinite macerals (avg 16.4 percent, mmf) (Table 2).

In contrast, the lower bench generally is thin (avg 0.77 ft,
n=23), laterally discontinuous, contains more dull clarain and
durain, and typically is higher in ash yield (avg 18.69 per-
cent, dry basis) and sulfur content (avg 1.84 percent, dry ba-
sis). Its calorific value (avg 12,036 Btu/lb) is lower than for
the upper bench. Petrographically, the lower bench contains
lower percentages of vitrinite macerals (avg 65.6 percent,
mmf) and higher percentages of liptinite (avg 12.5 percent,
mmf) and inertinite macerals (avg 21.9 percent, mmf) than
the upper bench (Tables 2–3). Analysis of polished, etched
surfaces also indicates that cryptogelocollinite and cryptovit-

Results
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Figure 6. Petrographic profile for sample 4728 showing temporal variability
among coal macerals.
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Thickness 
(ft)

Ash Yield 
(%, dry)

Total Sulfur 
(%, dry)

Btu (dry)
Vitrinite 
(mmf)

Liptinite 
(mmf)

Inertinite 
(mmf)

Average 0.77 18.69 1.84 12,036 65.6 12.5 21.9
Maximum 1.75 35.44 13.15 13,441 90.0 26.0 41.9
Minimum 0.15 9.78 0.58 8,983 32.1 2.7 7.3

Table 3. Average, maximum, and minimum values for selected parameters in the lower 
bench of the Fire Clay coal bed in the study area (n=23).

rodetrinite, which are indicative of more degradation, occur
more frequently in the lower bench than the upper bench (Fig.
6). Figure 6 also emphasizes an important petrographic char-
acteristic of the Fire Clay coal bed: rather large vertical (within-
bed) variability. For instance, a wide range of petrographic
signatures can be observed in column 4728; total vitrinite
contents range from 17.2 to 88.9 percent, total liptinite con-
tents from 2.9 to 31.4 percent, and total inertinite contents
from 8.2 to 51.4 percent.

Thin, discontinuous rider coals were present in samples
4650 and 4632 (Fig. 5). These thin coals were high in ash
yield (avg 26.5 percent) and total sulfur content (avg 4.4 per-
cent), which contrasts greatly with the generally low ash yields
and sulfur contents of the upper bench.

Full-Channel Samples
Nineteen full-channel samples were analyzed for selected

geochemical and petrographic parameters; average, maximum,
and minimum values are shown in Tables 4 through 6. Com-
plete analytical data for the full-channel and bench samples
are found in Eble and others (1996). An analysis of the accu-
mulated data shows that although many parameters have a
rather uniform distribution across the study area, others do
not. For instance, ash yield, total sulfur content, and calorific
value (Fig. 7, Table 4) are relatively uniformly
distributed across the study area. In contrast,
chlorine and total vitrinite contents are higher
in the western part of the study area, whereas
total inertinite and liptinite contents generally
are higher in the eastern part of the study area
(Figs. 8–9, Table 5). Chlorine content is im-
portant because it corrodes the internal parts
of combustion furnaces and, as such, is re-
garded as a detrimental element in coal; con-
centrations over 0.2 percent (2,000 parts per
million [ppm]), and in some cases over 0.1
percent (1,000 ppm), may be regarded as ex-
cessive in some cases. Coal samples from the
western part of the study area have higher
chlorine contents, averaging 0.21 percent,
whereas samples from the eastern part have
lower chlorine contents, averaging 0.14 per-
cent (Fig. 8). This may, in part, be a function
of chlorine being mainly associated with

vitrinite, and the
western sample
sites, on average,
contain higher
percentages of
vitrinite than the
eastern sample
sites do.

High percent-
ages of liptinite and inertinite in coal have been shown to con-
tribute to low Hardgrove grindability index (HGI) values
(Hower and Wild, 1988). Coal with HGI values less than 50
may be rejected by some power plants, especially those with
pulverized air-injection furnaces, because the coal is too dif-
ficult to grind. Regardless, the consistent thickness, high calo-
rific value, low to moderate ash yields, and total sulfur con-
tents of the Fire Clay coal make it a prime fuel source for
many utilities in Kentucky, and also for states along the east
coast of the United States (e.g., South Carolina, Georgia, and
Florida). The consistently high ash fusion temperatures (avg
2,861°F) make it a good choice for dry-bottom boilers, be-
cause the ash remains in a solid form after combustion.

Parameter Variability According to Ash
Yield

Of the 330 bench samples that were collected and ana-
lyzed, 234 were coal (less than 50 percent ash yield by weight)
and the rest were inorganic partings.

Tables 7 through 9 show the average values of selected
analytical parameters in groups of coal with increasing levels
of purity to demonstrate how the parameters vary with ash
yield. In part, these groupings were developed because they

Results
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Average Maximum Minimum
Total vitrinite 73.8 87.5 44.3
Total liptinite 7.5 19.5 3.1
Total inertinite 18.7 36.2 9.4
Maximum vitrinite 
reflectance
(oil immersion)

0.87 0.97 0.63

Final ash fusion 
temperature (reducing 
environment)

2,860 3,000 2,525

Magnesium 0.04 0.22 0.01
Sodium 0.04 0.07 0.02
Iron 0.44 1.01 0.17
Titanium 0.11 0.19 0.06
Silica 2.99 4.71 2.06
Calcium 0.10 0.32 0.05
Potassium 0.160 0.440 0.008
Phosphorus 0.006 0.01 0
Aluminum 1.59 3.03 0.85

Table 5. Average, maximum, and minimum values for selected 
parameters in full-channel samples from the Fire Clay coal bed.

Average Maximum Minimum
Bed thickness 3.71 5.45 2.36
Moisture
(as-determined) 2.06 2.79 1.57
Volatile matter
(as-determined) 34.96 36.52 32.39
Fixed carbon
(as-determined) 54.49 58.28 47.1
Ash yield
(as-determined) 11.56 20.38 6.91
Pyritic sulfur (dry) 0.26 0.99 0.02
Organic sulfur 0.72 1.11 0.58
Sulfatic sulfur (dry) 0.01 0.03 0
Total sulfur (dry) 0.98 2.11 0.67
Carbon 74.57 79.02 66.67
Hydrogen 4.79 5.14 4.36
Nitrogen 1.61 1.86 1.39
Oxygen 6.54 7.56 5.81
Btu 13,210 13,987 11,942

Table 4. Average, maximum, and minimum values for selected 
parameters in full-channel samples from the Fire Clay coal bed.

approximate a cleaned coal product (i.e., coal that has under-
gone beneficiation). Most eastern Kentucky coal that is mined,
including the Fire Clay coal in the study area, is cleaned in
preparation plants prior to use. The purity groups are: (1) to-
tal coal + rock samples, (2) total coal samples that are < 50
percent ash, (3) coal samples that are < 20 percent ash, (4)
coal samples that are < 15 percent ash, and (5) coal samples
that are < 10 percent ash. Data from five cleaned
Fire Clay + Fire Clay rider coals (“Clean FC” in
Tables 7 through 9) and 64 other eastern Ken-
tucky coals that were cleaned in preparation plants
(“Clean EK” in Tables 7 through 9) are also pre-
sented for comparison.

Some parameters vary little for all the group-
ings. These parameters are bench thickness and
moisture, as-determined volatile matter, and or-
ganic and sulfatic sulfur contents. Some param-
eters increase in concentration as ash yield de-
creases. These are fixed carbon content, calorific
value (Btu), total vitrinite content, and elemental
carbon, hydrogen, nitrogen, and oxygen contents.
Other parameters decreased as ash yield de-
creased. These include ash yield, total liptinite and
inertinite contents, and contents of every major
and minor element that was tested for. Total sul-
fur and pyritic sulfur contents increased from the
total coal + rock group to the total coal < 50 per-
cent ash group, and then progressively decreased
through the < 20, < 15, and < 10 percent ash
groups. Average parameter values for the cleaned
coal samples are very similar to the values for the

ash-delimited categories: a comparison shows
nearly identical values for contents of moisture,
volatile matter, fixed carbon, total sulfur, and sul-
fur forms; calorific value; petrographic compo-
sition; and elemental carbon, hydrogen, nitro-
gen, and oxygen contents (Tables 7–8).

Many of these trends are significant if the Fire
Clay coal is to remain a viable economic resource
in light of recently imposed restrictions on the
emission of sulfur dioxide (SO

2
) by coal-fired

power plants. Title IV of the Clean Air Act
Amendments of 1990, entitled “Acid Deposition
Control,” has forced coal-burning electric utili-
ties, which are the primary consumers of coal,
to burn lower sulfur coal or retrofit some of their
existing boilers with expensive methods of sul-
fur reduction (e.g., flue-gas desulfurization, flu-
idized-bed combustion). Because the Fire Clay
is an economically important low-sulfur coal bed
in the Eastern Kentucky Coal Field, knowledge
of its approximate sulfur reduction characteris-
tics is valuable. The average total sulfur content
and calorific value for the < 20 and < 15 percent

ash categories compare very closely with the values for cleaned
Fire Clay + Fire Clay rider coal, and for other cleaned eastern
Kentucky coals (Table 7). The SO

2
 
emission values for the

< 20 and < 15 percent ash categories are 1.45 and 1.43 lb
SO

2
/million Btu, respectively, whereas the average SO

2
 
emis-

sion value for the five cleaned Fire Clay + Fire Clay rider
coal samples is 1.44 lb SO

2
 
/million Btu.

Results
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Average Maximum Minimum
Chlorine 0.17 0.28 0.11
Molybdenum 0.78 2.50 0.00
Manganese 56.80 323.90 7.93
Zinc 12.90 41.80 1.04
Rubidium 10.80 35.00 0.17
Copper 17.60 31.60 3.82
Strontium 84.40 172.70 2.89
Nickel 13.10 26.70 2.42
Zirconium 60.00 123.60 2.11
Cobalt 3.57 5.46 0.55
Chromium 45.70 80.90 25.20
Barium 313.60 720.10 164.80
Vanadium 58.40 112.50 16.50

Table 6. Average, maximum, and minimum values for 
selected trace elements in full-channel samples from the 
Fire Clay coal bed. Values are in parts per million on a 
whole-coal basis.

TRACE ELEMENTS IN COAL
Title III of the Clean Air Act Amendments of 1990, en-

titled “Hazardous Air Pollutants,” concerns 189 trace elements
(mainly organic chemical compounds) whose
emission levels may require monitoring. Thir-
teen of these elements routinely occur in trace
concentrations (parts per million) in coal, and
may require monitoring. They are Sb, As, Be,
Cd, Cl, Cr, Co, Pb, Mn, Hg, Ni, P, and Se.
Two additional elements, thorium and ura-
nium, are also included in Title III because
they fall under the category of radionuclides.
Currently, no limitations have been estab-
lished for trace elements, nor has the U.S. En-
vironmental Protection Agency (EPA) de-
cided that all of the above-listed elements will
require monitoring. Of these elements, Cr, Co,
Mn, Ni, P, and Cl were determined for most
samples.

Recognizing abundance trends for these
elements is difficult because of extreme spa-
tial and vertical variability. It is possible,
though, to establish that all of the tested ele-
ments are partially, if not dominantly, inor-
ganic. When considered on a whole-coal ba-
sis, all of the trace-element concentrations
decrease as ash yield decreases (see Tables
9–10). This indicates that coal beneficiation
techniques, in addition to lowering ash and
sulfur, may be an effective method for lower-
ing potentially detrimental trace-element con-
centrations in coal prior to combustion.

Several of the element concentrations for the cleaned
coal samples fall between the range of concentrations
for the ash categories. These elements are Mg, Na, Fe,
Ti, Si, Ca, K, Al, Zn, Rb, Cu, Ni, Zr, and Co. There is
poor correspondence between cleaned coal samples and
ash category samples for some elements, however. For
example, the average molybdenum concentration for the
cleaned Fire Clay + Fire Clay rider coals (0.15 ppm) is
much lower than the range for the ash-delimited cat-
egories (0.66 to 0.78 ppm), and the average concentra-
tion for the 64 cleaned eastern Kentucky coals (0.97
ppm) is above the ash-delimited range. Average man-
ganese, chromium, barium, and vanadium concentra-
tions for both the cleaned Fire Clay + Fire Clay rider
coals and the 64 cleaned eastern Kentucky coals are
below the ranges for the ash-delimited categories, and
strontium values are above the range (Table 9). We do
not know why half of the tested elements fell within the
ranges of the ash-delimited categories and half did not,
but this lack of correspondence may be related to dif-
ferent coal beds, as well as coal from different geo-
graphic locations, being directly compared. This is es-
pecially true for the 64 cleaned coal samples from the

Figure 7. Distribution of ash yield (top number), total sulfur content (middle
number), and Btu (bottom number, X 1,000) for full-channel (black squares)
and calculated full-channel (white squares) samples in the study area. The
calculated full-channel values were derived using weighted averages of
values from the bench samples. Sample location numbers are shown on
Figure 5.
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Eastern Kentucky Coal Field, which came from
several different coal beds. A fairer, and per-
haps more accurate, comparison probably would
be to examine coal from a mine that has a prepa-
ration facility specifically dedicated to it. With
the topic of trace elements in coal continuing to
be an important issue, a study of this type cer-
tainly appears worth pursuing.

PALEOECOLOGY OF THE FIRE

CLAY COAL BED
Samples from 16 locations were analyzed pa-

lynologically to document the palynofloras in
the study area and, by inference, the types and
abundances of plants that grew in the Fire Clay
paleomire. This part of the study is an exten-
sion of prior palynologic work on the Fire Clay
coal bed (Eble, 1988; Eble and Grady, 1990,
1993; Eble and others, 1994). As was noted pre-
viously, the upper and lower benches of the Fire
Clay coal bed are geochemically and petro-
graphically distinct. They are also palynologi-
cally distinct. In the upper bench the most abun-
dant spore is usually Lycospora, and Lycospora
pellucida, L. granulata (both produced by

Lepidophloios), and L. pusilla (produced by
Lepidodendron) are generally the most abun-
dant species. Lycospora micropapillata and L.
orbicula (both produced by Paralycopodites)
are locally abundant. In contrast, the lower
bench tends to be more diverse in composition,
with spores of small lycopsids (mostly
Densosporites), ferns (tree-like forms such as
Punctatisporites minutus and Apiculatasporites
saetiger, and small varieties such as
Granulatisporites), calamites (Calamospora
and large species of Laevigatosporites), and
cordaite pollen (Florinites) occurring more fre-
quently.

Compositional Groupings for
the Fire Clay Coal Bed

In an effort to make the collective data set
on the Fire Clay coal less cumbersome and more
understandable from a paleoecological stand-
point, the data were summarized qualitatively
into four compositional groups on the basis of
spore and maceral content, ash yield, and sul-
fur content. This approach has been success-
fully used in previous studies of the Fire Clay
coal bed (Eble, 1988; Eble and Grady, 1990,
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Figure 8. Distribution of chlorine content (top number), free-swelling index
(middle number), and Hardgrove grindability index (bottom number) at
18 of the 28 sample locations. Chlorine analyses were not performed on
bench samples. Sample location numbers are shown on Figure 5.

Hyden West Hyden East

Hoskinston Cutshin Leatherwood Tilford

Vicco

4913

Hazard South

44.3

77.7

81.1
5.2

13.7

81.6
5.8

12.6
80.2
4.2

87.5
3.1
9.4

75.1
6.6
18.3

73.6
10.4
16.0

69.4
8.4
22.2

73.5
4.6
21.9

5.3
17.0

80.4
6.2

13.4

52.9
15.5
31.6

57.8
15.6
26.6

60.2
23.4
16.4

13.9
19.2
66.9

77.2
9.5

13.380.0
7.0

13.0
90.1
4.3
5.6

66.2
7.6

26.2

19.5
36.2

1704

82.5
4.8

12.7

73.3
8.4

18.3

15.6

71.6
5.4
24.0

72.5
9.1

18.4

70.6
6.2

23.2

LETCHER
CO.

79.9
7.0

13.1

74.0
8.0

18.0

LESLIE CO.

PERRY CO.

0 3 6 mi

0 5 10 km

Figure 9. Distribution of maceral groups (top to bottom: vitrinite, liptinite,
and inertinite, mmf basis) for full-channel (black squares) and calculated
full-channel (white squares) samples. The calculated full-channel values
were derived using weighted averages of values from the bench samples.

Paleoecology of the Fire Clay Coal Bed



11

Table 8. Average values for selected parameters in samples from the Fire Clay coal bed.

Average Total Coal + 
Rock Increments

(n=312)

Average Total 
Coal Increments 

<  50% Ash 
(n=235)

Average Coal 
Increments <  20% 

Ash (n=199)

Average Coal 
Increments < 15% 

Ash (n=181)

Average Coal 
Increments 
< 10% Ash 

(n=138)

Clean 
FC*

Clean 
EK†

Total vitrinite 72.20 72.40 74.30 76.20 79.90 74.80 76.50

Total liptinite 9.3 9.0 8.0 7.5 6.4 6.6 7.9

Total inertinite 18.9 18.6 17.7 16.3 13.7 18.6 15.6

Magnesium 0.15 0.04 0.03 0.02 0.02 0.04 0.04

Sodium 0.11 0.04 0.03 0.03 0.03 0.04 0.03

Iron 0.95 0.62 0.50 0.47 0.35 0.43 0.41

Titanium 0.33 0.10 0.08 0.06 0.05 0.09 0.06

Silica 8.15 2.81 2.04 1.72 1.23 2.14 1.72
Calcium 0.14 0.11 0.10 0.10 0.09 0.10 0.09
Potassium 0.64 0.16 0.09 0.07 0.05 0.15 0.14
Phosphorus 0.020 0.006 0.005 0.004 0.004 0.008 0.008
Aluminum 4.45 1.54 1.14 1.01 0.83 1.38 1.11
*Average parameter values for five samples of cleaned Fire Clay + Fire Clay rider coal (from Hower and others, 1994)
†Average parameter values for 64 samples of cleaned eastern Kentucky coals (from Hower and others, 1994)

1993; Eble and others, 1994). Table 11 and Figure 10 sum-
marize the four compositional groups. See Eble and others
(1996) for a list of the identified spores and pollens, grouped
according to parent-plant affinity, and their distribution in the
studied samples.

Group 1: Lycospora–Vitrinite Dominant. This group is
marked by high percentages of arboreous lycopsid spores (avg
80.6 percent), namely Lycospora and, to a lesser extent,
Granasporites medius. It is typically associated with bright
coal lithotypes (vitrain, clarain) that contain high percentages

of vitrinite macerals (avg 83.7 percent, mmf). The ash yields
(avg 7.6 percent, dry basis) and sulfur contents (avg 1.4 per-
cent, dry basis) of coal samples in this group are commonly
low, but tend to be variable (Table 11). The Lycospora–
vitrinite-dominant group formed in areas of the Fire Clay mire
that were covered with water a majority of the time. This en-
vironment would be conducive for arboreous lycopsid growth,
reproduction, and expansion (Phillips, 1979; DiMichele and
Phillips, 1985), and also would have prevented oxidation of
the peat surface, thereby promoting the formation of a coal

Paleoecology of the Fire Clay Coal Bed

Table 7. Average values for selected parameters in samples in the Fire Clay coal bed.

Average Total Coal 
+ Rock Increments

(n=312)

Average Total 
Coal Increments 

<  50% Ash 
(n=235)

Average Coal 
Increments 
<  20% Ash 

(n=199)

Average Coal 
Increments 
<  15% Ash 

(n=181)

Average Coal 
Increments 
<  10% Ash 

(n=138)

Clean 
FC*

Clean 
EK†

Bed thickness 0.39 0.40 0.40 0.41 0.42

Moisture (as-determined) 2.33 2.47 2.53 2.55 2.46 2.07

Volatile matter
(as-determined, dry)

32.29 34.28 35.23 35.51 36.15 36.46 36.86

Fixed carbon
(as-determined, dry)

50.46 54.67 56.96 57.64 58.61 54.51 56.08

Ash yield (as-determined, 
dry)

29.40 11.00 7.78 6.82 5.20 8.56 7.03

Pyritic sulfur (dry) 0.28 0.32 0.23 0.22 0.14 0.24 0.22

Organic sulfur 0.57 0.73 0.73 0.72 0.73 0.75 0.75

Sulfatic sulfur (dry) 0.02 0.02 0.01 0.01 0.01 0.00 0.01
Total sulfur (dry) 0.90 1.11 0.99 0.99 0.89 0.99 0.97
Carbon 63.42 75.55 78.12 78.99 80.36 76.96 78.46
Hydrogen 4.24 4.90 5.04 5.09 5.19 5.09 5.11
Nitrogen 1.36 1.60 1.67 1.70 1.74 1.68 1.63
Oxygen 6.29 6.31 6.38 6.44 6.51 6.67 6.79
Btu 13,152 13,198 13,671 13,823 14,104 13,790

*Average parameter values for five samples of cleaned Fire Clay + Fire Clay rider coal (from Hower and others, 1994)

†Average parameter values for 64 samples of cleaned eastern Kentucky coals (from Hower and others, 1994)
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Average Total Coal 
+ Rock Increments

(n=312)

Average Total 
Coal Increments 

<  50% Ash 
(n=235)

Average Coal 
Increments 
<  20% Ash 

(n=199)

Average Coal 
Increments 
<  15% Ash 

(n=181)

Average Coal 
Increments 
<  10% Ash 

(n=138)

Clean 
FC*

Clean 
EK†

Molybdenum 1.23 0.78 0.69 0.66 0.69 0.15 0.97

Manganese 128.60 52.40 43.22 37.66 27.71 11.93 16.15

Zinc 30.93 17.72 12.17 9.73 6.57 14.71 11.13

Rubidium 45.85 11.39 6.28 4.32 3.25 11.25 11.58

Copper 31.91 21.08 17.11 16.14 13.68 14.47 15.34

Strontium 137.40 100.40 101.40 99.78 105.90 144.80 143.20

Nickel 22.70 16.24 13.84 12.83 11.68 10.53 12.09

Zirconium 124.10 64.41 52.24 46.75 36.51 64.40 34.97
Cobalt 6.59 4.08 3.10 2.81 2.48 2.63 2.59
Chromium 86.50 43.00 31.53 27.35 20.85 14.27 13.18
Barium 548.86 243.45 203.22 189.72 179.65 126.40 103.58
Vanadium 110.00 59.69 44.42 38.38 30.91 28.35 24.91
*Average parameter values for five samples of cleaned Fire Clay + Fire Clay rider coal (from Hower and others, 1994)

†Average parameter values for 64 samples of cleaned eastern Kentucky coals (from Hower and others, 1994)

Table 9. Average values for selected trace elements in samples from the Fire Clay coal bed. Values are in parts per million on a 
whole-coal basis.

Average Maximum Minimum
Molybdenum 0.8 2.5 0.0
Manganese 56.8 323.9 1.4
Zinc 12.9 41.8 1.0
Rubidium 10.8 35.0 0.2
Copper 17.6 31.6 3.8
Strontium 84.4 172.7 2.9
Nickel 13.1 26.7 2.4
Zirconium 56.0 123.6 2.1
Cobalt 3.6 5.5 0.6
Chromium 45.7 80.9 25.2
Barium 313.6 720.1 164.8
Vanadium 58.4 112.5 16.5
Arsenic 24.6 146.8 0.0
Lead 12.7 24.5 3.2

Table 10. Average, maximum, and minimum values for 14 
elements in full-channel samples of Fire Clay coal (n=19). 
Values are in parts per million on a whole-coal basis.

with high vitrinite content. The commonly low, but variable
ash yields and sulfur contents of samples in this group (Table
11) may be the result of localized, periodic detrital influx.

Group 2: Mixed Palynoflora–Vitrinite Dominant. This
group is petrographically and geochemically similar to group
1, with high vitrinite contents (avg 87.3 percent, mmf) and
low ash yields (avg 5.3 percent) and sulfur contents (avg 0.9
percent), but it is not as variable as group 1. Group 2 is pa-
lynologically more diverse than group 1, with higher percent-
ages of tree fern (avg 18.3 percent), small fern (avg 18.2 per-
cent), and calamite (avg 11.8 percent) spores. This group, as

indicated by its high vitrinite content, also formed in areas of
the Fire Clay mire that were covered with water (or at least in
areas that maintained supersaturated peat substrates; see
above), or it was spared the effects of frequent fire. The
palynoflora that characterizes this group may be a response
to changes in acidity, nutrient availability, or some other re-
lated edaphic factors. The low ash yields and sulfur contents
of samples in this group (avg 5.3 and 0.9 percent, respec-
tively) indicate that detrital input and emplacement of
authigenic mineral matter and pyrite were minimal.

Group 3: Mixed Palynoflora–Moderate to Low
Vitrinite. This group palynologically consists of vari-
ous mixtures of lycopsid (trees and small varieties),
fern (tree-like and small forms), and, usually to a
lesser extent, calamite spores (Table 11). Petrographi-
cally, it contains more liptinite and inertinite macerals
(avg 10.2 and 24.5 percent, mmf, respectively) than
the previous two groups. Samples in this group are
generally low in ash yield and sulfur content (avg
4.5 and 0.9 percent, respectively). The increased per-
centages of liptinite and inertinite (mainly fusinite
and semifusinite) macerals suggest that peat in the
areas of the Fire Clay mire that supported this group
may have been intermittently exposed to air and oxy-
genated rain waters.

The relative paucity of arboreous lycopsid spores
(avg 49.8 percent) in this group may have been the
result of an inconsistent water cover, which would
have inhibited the lycopsids’ specialized reproduc-
tive mechanism. This suggests that the parts of the
Fire Clay mire in which this group developed were
relatively well drained (had a depressed water table)

Paleoecology of the Fire Clay Coal Bed
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Table 11.  Summary of geochemical, palynologic, and petrographic parameters for the four compositional groups.

Ash Yield
Sulfur 

Content
Arboreous 
Lycopsids

Small 
Lycopsids

Tree 
Ferns

Small 
Ferns

Calamites Cordaites Unknown Vitrinite Liptinite Inertinite

avg 7.6 1.4 80.6 2.8 3.8 5.5 5.8 0.7 0.7 83.7 7.3 9.0
Group 1 max 21.7 10.4 97.6 11.2 12.0 11.6 13.1 6.0 2.4 93.9 18.6 18.1

min 2.3 0.5 70.8 0.0 0.0 0.0 0.0 0.0 0.0 74.8 2.5 2.8
avg 5.3 0.9 45.9 2.5 18.3 18.2 11.8 1.0 2.3 87.3 4.6 8.1

Group 2 max 9.8 2.6 66.4 11.6 48.4 28.4 18.0 2.4 6.0 91.4 8.4 14.4
min 2.9 0.7 14.8 0.0 1.6 11.6 5.2 0.0 0.0 81.2 2.2 3.0
avg 4.5 0.9 49.8 12.5 16.5 10.8 7.2 1.7 1.6 65.3 10.2 24.5

Group 3 max 9.1 2.6 76.4 62.0 69.6 20.8 16.8 7.2 4.8 79.9 23.2 44.3
min 1.4 0.5 11.6 0.0 0.0 4.0 1.6 0.0 0.0 41.7 3.8 14.7
avg 22.0 1.6 34.2 9.5 24.9 14.3 11.5 3.6 2.1 59.4 14.7 25.9

Group 4 max 53.2 13.2 78.0 89.2 65.6 36.0 29.6 14.4 14.8 89.1 39.2 56.6
min 10.7 0.1 3.2 0.0 2.4 1.6 0.8 0.0 0.0 19.0 3.7 7.2

at least some of the time. The low ash yields and sulfur con-
tents that characterize this group further suggest that this part
of the Fire Clay mire was protected, to a large degree, from
detrital contamination. Well-drained conditions might also pro-
mote the leaching of mineral matter or mineral precursors from
the peat.

Group 4: Mixed Palynoflora–High Ash Yield. This
group is usually dominated by fern spores (tree-like and small
forms), with lycopsid (trees and small varieties), calamite, and
cordaite spores also occurring frequently (Table 11). The pet-
rographic composition of this group tends to be variable; gen-
erally, however, it contains high percentages of liptinite and
inertinite (avg 14.7 and 25.9 percent, respectively). Ash yields
typically are high for this group (avg 22.0 percent), but also
tend to be variable. Sulfur contents generally are low to mod-
erate (avg 1.6 percent). This group probably formed in areas
of the Fire Clay mire that were subject to periodic detrital
influx that may have included both sediment and inertinite
(e.g., buoyant charcoal). This would effectively raise both the
mineral matter and inertinite content of the peat. The diverse
nature of the palynoflora and maceral composition suggests
that the prevailing environmental conditions under which this
group developed probably were variable and, to some degree,
related to the introduction of sediment-laden (and inertinite-
laden?) extra-mire waters.

In certain cases, high levels of aerobic degradation may
have been caused by a depressed water table. A moderate-ash
durain (avg vitrinite 44.2 percent, liptinite 17.7 percent,
inertinite 38.0 percent, and ash yield 14.5 percent) that oc-
curs in the upper bench at most sample localities may be the
result of such a mechanism. A period of reduced moisture
input to the mire may have allowed for a general lowering of
the local water table, which resulted in increased aerobic con-
ditions in surficial peat layers, and the production of inertinite
macerals and inertinite maceral precursors. Alternatively, this
distinctive lithotype may be the result of a raised water table

and a widespread flood. If this latter scenario is correct, then
at least some of the spore and maceral assemblage may be
foreign, brought into the paleomire along with sediment.

INTERPRETATION
Modern domed mires (bog forests) similar to the ones pres-

ently developing in equatorial Indonesia and Malaysia have
been cited as attractive analogs for Carboniferous peat sys-
tems (White, 1913; Smith, 1962; Cecil and others, 1985). Our
results show that a majority of the studied samples are in the
Lycospora–vitrinite-dominant group and the mixed-
palynoflora–high-ash-yield group. This suggests that much
of the Fire Clay mire in the study area developed in areas with
near-constant water cover (or at least peat supersaturation),
and also in areas that were subject to frequent, and often re-
peated, inundation by extra-mire waters. Morphologically,
these areas were probably planar to slightly domed, and hy-
drologically they were rheotrophic. Rheotrophic mires receive
part of their moisture from surficial waters and part from at-
mospheric waters. The mixed-palynoflora–high-vitrinite
group, which is the least represented group, also is character-
ized by very high percentages of vitrinite (avg 87.3 percent),
suggesting that peat developed under conditions very similar
to those described for group 1 (i.e., abundant moisture). This
group also formed in a planar to slightly domed mire setting.

In contrast, the low ash yields and sulfur contents, paucity
of arboreous lycopsids, and increased inertinite and liptinite
contents of samples from the mixed-palynoflora–moderate-
to-low-vitrinite group could have resulted from peat forma-
tion in a domed mire setting that was mainly ombrotrophic
(receiving all of its moisture from rain waters) and periodi-
cally exposed. A domed mire morphology would effectively
curtail widespread detrital input, simply because of its posi-
tive relief. This hypothesis is supported by the general lack of
inorganic partings in the upper bench. If present, inorganic
partings almost invariably occur close to the flint-clay part-

Interpretation
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ing. Additional field data (S. Greb, oral commun.) indicate
that this trend of lack of inorganic partings continues to the
southeast (Fig. 4).

The Fire Clay coal bed in the study area is probably the
result of both planar and domed mire components contribut-
ing to the formation of the bed. The Lycospora-dominant–
high-vitrinite group, mixed-palynoflora–high-vitrinite group,
and mixed-palynoflora–high-ash-yield group all suggest peat
formation in planar or slightly domed mire settings. In con-
trast, the mixed-palynoflora–moderate-to-low-vitrinite group
may have formed in a domed mire that was acidic, protected
from detrital contamination, and subject to periods of surficial
oxidation. Planar and domed morphologies are closely related
and not mutually exclusive, however. Modern domed peat sys-
tems consist of both planar and domed peat phases (Ander-

son, 1964; Gore, 1983; Moore, 1987). In these systems, peat
bodies start out as planar mires and, as long as high moisture
conditions are maintained, evolve into domed mires.

Bench composition in the Fire Clay coal can be directly
related to mire morphology and hydrologic regime. The lower
bench paleomire is interpreted as having been rheotrophic,
planar, and subject to frequent clastic contamination. This re-
sulted in a coal that varies greatly in extent and thickness, and
is high in ash yield, inertinite, and liptinite. The deposition of
the flint-clay parting, probably the result of volcanic activity,
arrested peat accumulation and provided a stable platform on
which the upper-bench paleomire developed. Unlike in the
lower bench, peat development in the upper-bench paleomire
was widespread, and proceeded relatively unhindered by de-
trital input (much less so than in the lower bench). Part of this
upper-bench paleomire may have been ombrogenous and
domed, which may have been a contributing factor in protect-
ing the mire from detrital contamination. As a result, the coal
that was derived from this peat is thick, and low in ash yield
and sulfur content. Figure 11 illustrates the interpreted devel-
opment of the Fire Clay coal bed.

RECOMMENDATIONS FOR THE COAL

MINING INDUSTRY
The detailed geochemical, petrographic, and palynologic

information gathered from a study of this type is invaluable,
but also costly in terms of time and money. Unless very de-
tailed information is needed, collection of bench-scale
samples, rather than small-scale increment samples, is rec-
ommended. Bench sampling will provide more detailed in-
formation than a set of full-channel samples, and decrease
analysis time and overall analytical costs. Also, the additional
information gained from bench-scale samples may allow a
surface-mine operator to selectively mine coal of superior
quality and isolate parts of a coal bed of inferior quality. This
type of sampling is most beneficial using exploratory drill
cores taken in advance of mining, which allows the thickness
and quality of individual benches to be determined and mapped
prior to mining. We also recommend that, wherever possible,
samples of cleaned coal and coal refuse from coal prepara-
tion facilities be collected along with in-mine samples. This
is especially necessary in cases where individual mines, or a
group of closely spaced mines producing coal from the same
bed, have dedicated preparation facilities. Many more data
are needed on coal that has been cleaned, because much of
the coal mined in Kentucky is washed prior to utilization.

For the Fire Clay coal bed in the eight-quadrangle study
area, the bottom bench should be left alone, and mining should
be confined to the upper bench. The results of this study clearly
indicate that the lower bench is, with few exceptions, thin and
of poor quality. The same is true for any rider coals in the

Recommendations for the Coal Mining Industry

Figure 10. Summary of four compositional groups in the
Fire Clay coal bed.

Lycospora– Vitrinite Dominant
• Abundance of arboreous lycopsid spores (avg

80.6%) and vitrinite (avg 83.7%)
• Low ash yields (avg 7.6%), moderate total

sulfur contents (avg 1.4%)
• Rheotrophic mire with a consistent water table;

flooded conditions common
Mixed Palynoflora–Vitrinite Dominant
• Increased percentages of tree fern (avg

18.3%), small fern (avg 18.2%), and calamite
(avg 11.8%) spores

• High vitrinite contents (avg 87.3%)
• Low ash yields (avg 5.3%) and total sulfur

contents (avg 0.9%)
• Rheotrophic mire with a consistent water table;

flooded conditions less common(?)
Mixed Palynoflora–Moderate to Low Vitrinite
• Lycopsid (tree + small), fern (tree + small), and

calamite spores in varying proportions
• Increased percentages of liptinite (avg 10.2%)

and inertinite (avg 24.5%)
• Very low ash yields (avg 4.5%) and total sulfur

contents (avg 0.9%)
• Ombrotrophic mire with an inconsistent water

table; surficial peat exposure and oxidation
Mixed Palynoflora–High Ash Yield
• Palynologically diverse; admixtures of lycopod,

fern, calamite, and cordaite spores and pollen
• Variable petrography; elevated liptinite (avg

14.7%) and inertinite (avg 25.9%) percentages
• High ash yields (avg 22.0%), moderate total

sulfur contents (avg 1.6%)
• Rheotrophic mire with an inconsistent water

table; clastic influx common



15

Figure 11. The evolution of the Fire Clay paleomire. (a) Peat started accumulating in a planar, rheotrophic mire that
was discontinuous and subject to clastic influx. This peat is preserved as the lower bench of the Fire Clay coal bed.
(b) Volcanic ash, which is ultimately preserved as a flint-clay parting, is deposited. (c) Peat accumulates after the ash
fall and is preserved as the upper bench of the Fire Clay coal bed. Some parts of this bench are interpreted as having
been derived from domed, ombrogenous peat.

A

B

C
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study area, which are also thin, discontinuous, and of poor
quality. At one location, the rider coal was 10 percent total
sulfur.

Finally, the data gathered from this study probably are best
applied to unmined coal in the study area. If conclusions are
to be extrapolated to Fire Clay coal (or some other coal) in
another part of the Eastern Kentucky Coal Field, additional
bench samples should be analyzed to confirm or modify any
trends reported on here. The results of this study provide an
invaluable set of guidelines for future sampling programs in
the Fire Clay and other Kentucky coals, however.

SUMMARY
Closely spaced bench samples from the Fire Clay coal bed,

collected at 28 localities in a study area of eight 7.5-minute
quadrangles in the Eastern Kentucky Coal Field, were ana-
lyzed geochemically, petrographically, and palynologically to
determine any spatial or temporal trends among the studied
parameters. Results indicate that the upper bench of the Fire
Clay coal is generally thick, laterally continuous, low in ash
yield and sulfur content, moderate to high in Btu content, and
high in total vitrinite content. In contrast, the lower bench is
generally thin, laterally discontinuous, moderate to high in
ash yield and sulfur content, low to moderate in Btu content,
and enriched in liptinite and inertinite macerals, compared
with the upper bench. Where present, rider coals tend to be
thin, laterally discontinuous, and high in both ash yield and
sulfur content. In other areas of the Eastern Kentucky Coal
Field, especially southeast of the study area, these rider coals
are quite thick and can be of good quality; in some cases, the
rider coals are mined along with, and in certain instances in
place of, the upper and lower benches.

At most locations, both benches of the Fire Clay coal bed,
including the flint-clay parting and some roof strata in some
instances, were mined together as a single unit; the inorganic
material was separated from the coal later at a coal prepara-
tion plant. Grouping the analytical data into categories of in-
creasing coal purity to approximate a cleaned coal product
(i.e., total coal + rock, total coal < 50 percent ash, coal < 20
percent ash, coal < 15 percent ash, and coal < 10 percent ash)

revealed that some parameters increased as ash content de-
creased (e.g., Btu and total vitrinite content), some decreased
(e.g., ash yield, total sulfur content, and several minor ele-
ment contents), and others showed no trend at all (e.g., thick-
ness and total moisture content). A comparison of these data
with data from 64 cleaned coal samples (coal that had been
treated in a preparation plant) largely confirmed these trends.
This is significant, especially with regard to Titles III and IV
of the Clean Air Act Amendments of 1990, because it indi-
cates that many deleterious components of coal appear to be
removable using conventional coal cleaning methods prior to
combustion. Examples of these undesirable constituents in-
clude pyrite, chromium, cobalt, and nickel.

Collectively, the geochemical, petrographic, and
palynologic data assembled for this report were used to de-
fine four compositional groups, which allowed for paleoeco-
logical interpretation of the Fire Clay coal bed in the study
area. Group 1, Lycospora-dominant with high vitrinite con-
tent, is interpreted as having formed in areas of the Fire Clay
paleomire that stayed very wet, to the point of having stand-
ing water, a majority of the time. This group probably devel-
oped in areas of the mire that were dominantly rheotrophic
and planar. Group 2, a mixed palynoflora with high vitrinite
content, is defined by having a more diverse palynoflora than
group 1 (increased percentages of small lycopsid, fern, and
calamite spores) and high percentages of vitrinite. This group
is also interpreted as having formed in areas that were very
wet most of the time, and that were predominantly rheotrophic
and planar. Group 3, a mixed palynoflora with moderate to
low vitrinite content, contains higher percentages of inertinite
than the first two groups and a diverse palynoflora, possibly
because the mire was becoming more ombrotrophic and
domed. Group 4 is a mixed palynoflora with high ash yield,
whose palynoflora are marked by various mixtures of lycopsid
(trees and small varieties), fern (tree-like and small forms),
calamite, and cordaite spores. Samples in this group contain
high percentages of liptinite and inertinite macerals, as well
as higher ash yields than in the other groups. The conditions
under which this group formed probably were rheotrophic and
planar. This group includes all samples from the lower bench
of the Fire Clay coal bed.

Summary
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