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ABSTRACT OF THESIS 

 

 

 

GEOLOGY OF THE EAU CLAIRE FORMATION AND CONASAUGA GROUP IN PART OF 
KENTUCKY AND ANALYSIS OF THEIR SUITABILITY AS CAPROCKS FOR DEEPER CO2 

SEQUESTRATION 

 

 Carbon sequestration, or carbon capture and storage (CCS), is the process of capturing 
anthropogenically generated CO2, transporting the CO2 to an injection site, and then injecting 
the CO2 into suitable reservoirs for long-term storage, or sequestration.  Integral to the 
successful sequestration of CO2 is an understanding of the confining intervals (seals) above 
potential reservoirs.  The purpose of this thesis research was to perform a detailed geological 
study of the Eau Claire Formation and equivalent parts of the Conasauga Group in part of the 
Ohio River Valley region in order to better evaluate its suitability as a confining interval for the 
underlying Mount Simon Sandstone and basal sandstone equivalents.  Detailed correlations of 
subsurface data using available geophysical logs, cores, and cuttings are used to correlate facies 
between the Eau Claire Formation in western and central Kentucky and the Conasauga Group in 
eastern Kentucky and neighboring areas.  Additional information on the confining potential of 
the Eau Claire and Conasauga formations were obtained through porosity evaluation and XRF 
analyses in combination with available geochemical and permeability data, which are keyed to 
the correlations.  

 

KEYWORDS:  carbon sequestration, confining interval, Maynardsville Formation, Nolichucky 
Shale, Maryville Formation 
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CHAPTER 1:  INTRODUCTION 

Background 

With ever-increasing energy needs and use of fossil fuels, anthropogenically generated 

volumes of carbon dioxide (CO2) are rising rapidly.  If atmospheric concentrations of CO2 

continue to increase at present rates, a change in global climate could result (e.g., Houghton and 

others, 1990; Le Treut and others, 2007).  Because some geologic reservoirs have held 

petroleum resources, water, and even CO2 for millions of years, these same reservoirs could 

store captured anthropogenic CO2, preventing it from escaping into Earth’s atmosphere (Reichle 

and others, 1999; Beecy and others, 2002).  Geologic sequestration or storage involves the 

capture of CO2 at the surface and injection of that CO2 into subsurface reservoirs (U.S. 

Department of Energy, 1999, 2004, 2005). Integral to the successful sequestration of CO2 is an 

understanding of the confining intervals (seals) above potential reservoirs. 

Significant research has been ongoing in the United States for more than ten years to 

evaluate the potential for future geologic sequestration of carbon dioxide.  In the Midwest, two 

U.S. Department of Energy regional partnerships have been investigating the carbon-storage 

potential of the region. The Midwest Regional Carbon Sequestration Partnership (MRCSP) is 

examining the potential for geologic sequestration along the Cincinnati Arch and northern 

Appalachian Basin eastward to the Atlantic coast (western Indiana, eastern Kentucky, Maryland, 

Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia (Wickstrom and others, 

2005; Battelle, 2011, 2012). The Midwest Geological Carbon Sequestration Consortium (MGSC) 

is examining potential CO2-storage options in the Illinois Basin (western Indiana, western 

Kentucky, and Illinois) (Frailey and others, 2005).  Several state cooperative partnerships have 
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also been investigating carbon-storage potential, including the Kentucky Carbon Sequestration 

Consortium (e.g., Greb and Solis, 2009). 

 Results of Phase I and II research from the MRCSP and MGSC partnerships have shown 

that the largest potential reservoir for carbon storage in both regions is the Cambrian Mount 

Simon Sandstone and its basal sandstone equivalents (Frailey and others, 2005; Wickstrom and 

others, 2005).  Because of the results from the Phase I research of the U.S. D.O.E. partnerships, 

the Mount Simon has become the target for several Phase 2, small-scale, CO2-injection tests 

(Battelle, 2011). Another U.S. D.O.E.-sponsored research program, the Simulation Framework 

for Regional Geologic CO2 Storage Infrastructure along the Arches Province of the Midwest 

United States, is using the results from data collected in Phase 1 and Phase 2 research and 

additional data compiled for the project to model large-scale injections into the Middle 

Cambrian Mount Simon Sandstone at selected locations around the Midwest (NETL, 2011).  

Modeling is up-scaling data from known injection wells in the region with data collected during 

the small-scale, Phase II, CO2-demonstration tests in order to determine the long-term feasibility 

of carbon storage in different areas.  

 Critical to modeling and regional use of this reservoir for future carbon storage, brine 

injection, or waste injection, is a geologic understanding of the vertical and lateral composition 

of the confining interval (caprocks, seals) above the Mount Simon Sandstone.  In western 

Kentucky and the Illinois Basin, the confining interval immediately above the sandstone is the 

Upper Cambrian Eau Claire Formation.  In eastern Kentucky, and the northern Appalachian 

Basin, the confining interval is the upper part of the Conasauga Group (Maynardsville 

Limestone, Nolichucky Shale, and Maryville Limestone).  Although data have been collected on 

these capping units, and the Conasauga Group is known to be laterally equivalent with the Eau 
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Claire Formation, little research has documented the detailed lateral and vertical variability in 

this important confining interval in many areas.  

Purpose    

The purpose of this thesis research was to perform a detailed geological study of the 

Eau Claire Formation and equivalent parts of the Conasauga Group in part of the Ohio River 

Valley region in order to better evaluate its suitability as a confining interval for the underlying 

Mount Simon Sandstone and basal sandstone equivalents. Detailed correlations of subsurface 

data using available geophysical logs, cores, and cuttings are used to correlate facies between 

the Eau Claire Formation in western and central Kentucky and the Conasauga Group in eastern 

Kentucky and neighboring areas.  Additional information on the confining potential of the Eau 

Claire and Conasauga Formations were obtained through porosity evaluation and X-ray 

fluorescence (XRF) analyses, in combination with available geochemical and permeability data, 

which are keyed to the correlations. 

Carbon Storage 

 Carbon sequestration, or carbon capture and storage (CCS), is the process of capturing 

anthropogenically generated CO2, transporting the CO2 to an injection site, and then injecting 

the CO2 into suitable reservoirs for long-term storage, or sequestration.  There are many options 

for possible sequestration into geologic formations including using abandoned or depleted oil 

and gas fields, deep saline reservoirs, deep unmineable coal beds, and basalts (U.S. Department 

of Energy, 1999, 2004, 2005). Of the various options, saline reservoirs have by far the greatest 

potential to store large volumes (possibly millions of tons per year) of CO2 within the 

Midcontinent U.S. (Reichle and others, 1999; Wickstrom and others, 2005; U.S. DOE, 2004, 

2005). Saline reservoirs are rock units bearing saline brine. Because they hold brine, they have 
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porosity and permeability.  Deep saline reservoirs with adequate permeability are considered 

good candidates for CO2 sequestration, because they are already used for disposal of industrial 

brines and wastes, they do not hold oil and gas resources, and they are sometimes widespread, 

so that they may be near to CO2 sources (Reichle and others 1999; U.S. DOE, 2004; 2005). 

Mount Simon Sandstone  

The Mount Simon Sandstone is an important saline reservoir for future carbon 

sequestration in Kentucky.  The Mount Simon in eastern Kentucky could potentially hold as 

much as 47.8 billion short tons (43.36 billion metric tons) of CO2 (Wickstrom and others, 2005).  

In western Kentucky, the Mount Simon could possibly store 154 billion short tons (140 billion 

metric tons) of CO2 (Frailey and others, 2005).   The sandstone was the target for one of the 

MRCSP’s Phase II, CO2-storage demonstration wells at Duke Energy’s East Bend site in Boone 

County, Kentucky (Batelle, 2011).  The sandstone is also the target reservoir for the MGSC’s 

Phase III, industrial-scale CO2-storage demonstration in central Illinois (Wickstrom and others, 

2005).  The regional significance of this reservoir, and its potential importance in northern 

Kentucky, where it underlies the Ohio River industrial corridor, is the reason its caprocks were 

chosen for investigation in this study. 

Caprock, Seal, and Confining Interval 

A crucial component of an acceptable reservoir is the caprock that lies above it.  The 

terms caprock, seal, and confining interval refer to impermeable rock above a reservoir that act 

to cap, seal, or confine the gas or fluid already in the reservoir, or injected into the reservoir, 

and prevent it from migrating out of the reservoir.  The primary cap, seal, or confining interval is 

the rock unit or zone of rock units immediately above or lateral to the reservoir.  Downey and 

others (1984) indicated that reservoir seals need (1) low permeability, (2) sizeable thickness, (3) 
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lateral continuity, (4) relative homogeneity, and (5) lack fractures.  In oil and gas reservoirs, 

adequate confinement is generally implied by the fact that the oil or gas is trapped by the 

overlying rock units. For injection wells in saline reservoirs, however, confining characteristics 

need to be demonstrated.  Aside from the immediate cap or confining interval, a secondary or 

ultimate confining interval is locally demonstrated for underground injection.  Secondary or 

ultimate confining intervals are shallower rock units or rock intervals that will act as a secondary 

seal if for some reason the primary seal is breached (e.g., Wickstrom and others, 2005). Depth of 

the reservoir and overlying caprock, permeability of the caprock, and the mechanical integrity of 

the cap-rock are important variables to consider in any injection reservoir (Reichle and others, 

1999; Bach and Adams, 2003). For effective CO2 storage, the confining interval must also exhibit 

mineralogy that will not be degraded by interaction with CO2 or acidity produced by CO2 

(Wickstrom and others, 2005; Neufelder, 2011).  To qualify as an acceptable confining interval, a 

formation must be impermeable, it must be consistently thick, and must be laterally continuous 

across the extent of the reservoir (e.g., Selley, 1998).  Because all subsurface injections are 

regulated by the government, these characteristics need to be adequately demonstrated before 

any injection can be permitted.  Optimal storage reservoirs should also have structural closure; 

however, structural closure may not be possible for CO2 storage because of the large volumes of 

CO2 that would need to be injected.  Structural closure is not evaluated in this study, and more 

work needs to be done in that area for future carbon-storage evaluation.                                                                    

Characteristics of Injected CO2 

CO2 injected into a saline reservoir for carbon storage would likely be injected as a 

super-critical or dense-phase fluid to maximize pore-volume space.  In its dense phase, CO2 

takes up 250 to 300 times less space per unit volume than in its gaseous phase (e.g., U.S. DOE).  
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This volume change is a favorable characteristic for carbon storage in deep saline reservoirs, 

especially when industrial-scale sequestration is considered.  Many power plants produce 

10,000 tons of CO2 a day, and a million tons or more may need to be removed annually (U.S. 

DOE).  As a super-critical fluid, CO2 will behave both as a liquid and a gas.  CO2 reaches a super-

critical state when surrounding pressure reaches 7.38 MPa (1070 psi) and a temperature of 

31.10C (88.00F) (e.g., Bachu, 2003). In much of Kentucky and the Midcontinent U.S., these 

pressures and temperatures are reached between 2,500 and 2,900 ft depth (Frailey and others, 

2005; Greb and Harris, 2009; Wickstrom and others, 2005).   

Injected CO2 will be more buoyant than the saline fluids in the storage reservoir 

(Wickstrom and others, 2005).  Once CO2 rises to the ceiling of the reservoir and meets the 

impermeable caprock, the CO2 will then spread laterally along the seal as dip or structural 

features permit (e.g., Bentham and Kirby, 2005).  For this reason, a contiguous and impermeable 

seal is imperative for keeping CO2 successfully sequestered within the reservoir.  Understanding 

lateral and vertical changes in porosity, permeability, mineralogy, and other mechanical 

characteristics of the Eau Claire Formation and Conasauga Group is critical for evaluating the 

suitability of CO2 storage in the Mount Simon Sandstone.  These same properties are also critical 

for evaluating the Mount Simon Sandstone and equivalents for its suitability for future waste or 

brine injection.  Herein, porosity, permeability and mineralogy related to lateral and vertical 

variation of lithofaces in the Eau Claire Formation, and the laterally equivalent Conasauaga 

Group, are investigated. 

Study Area  

 The Ohio River Valley has many CO2 and industrial sources.  The Ohio River Valley 

corridor is home to many population centers, manufacturing facilities, and power-producing 
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Geologic Setting 

Tectonic Features  

The major tectonic features within the study area are the Rome Trough, Rough Creek 

Graben, Grenville Front, and their associated faults (Fig. 1.2).  It is important to understand the 

formation and history of these tectonic features, as they may influence the deposition and 

structure of all sedimentary rock above and around them. 

 

Figure 1.2.  Map showing major tectonic structures in the region. RCFS=Rough Creek Fault 
System, PFS=Pennyrile Fault System, LFS=Lexington Fault System, KRFS= Kentucky River Fault 
System.  Black lines are faults.  From Greb and Solis (2009). 

 

Rome Trough 

The Rome Trough is an extensional graben which is filled with thick Lower to Late 

Cambrian strata (Woodward, 1961; McGuire and Howell, 1963; Drahovzal and Noger, 1995). The 

Rome Trough extends from northern Tennessee, northeastward through eastern Kentucky, into 

West Virginia and southwestern Pennsylvania (Fig. 1.2). The majority of faulting along the 
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margins of the Rome Trough are high-angle normal faults (White, 2002; Hickman, 2004).  The 

Kentucky River Fault System is the northern boundary of the Rome Trough in Kentucky (KRFS in 

Fig. 1.2).  Structural relief within the deepest part of the trough in Kentucky (along the northern 

edge) is 13,000 ft (Hickman, 2004).  The Lexington River Fault System is the western boundary of 

the Rome Trough (LFS in Fig. 1.2).  The Rome Trough is part of the eastern North American 

interior rift system and is believed to have formed in concert with the opening of the Iapetus-

Theic Ocean during the Early Cambrian (Harris, 1978; Thomas, 1991). 

Grenville Front 

The Grenville Front is the north to south-trending boundary between the Grenville 

Precambrian Province in the east, with the Eastern Granite-Rhyolite Province in the west (e.g., 

Lidiak and others, 1966).  Both of these surfaces are collectively referred to as “Basement” 

relative to overlying sedimentary strata.  In Kentucky, the Grenville Front separates Grenville 

basement from Precambrian Middle Run metasediments (Fig. 1.3), which accumulated in a rift 

basin above the Granite-Rhyolite basement, west of the front (Drahovzal and others, 1992).  The 

Lexington Fault System (LFS in Fig. 1.2) is developed above the front and approximates the trend 

of the front at the surface. Faulting and subsequent metamorphism is believed to range from 

0.880 to 1.1 Ga (Lidiak and others, 1966; Hoppe and others, 1983; Keller and others, 1983; Van 

Schmus and Hinze, 1985; Lucius and Von Frese, 1988; Drahovzal and others, 1992; Wickstrom 

and others, 2005). 
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Figure 1.3.  Precambrian geology in Kentucky. GF=Grenville Front. From Greb and Solis (2009). 

 

Rough Creek Graben 

In western Kentucky, the Rough Creek Graben trends east-west from central Kentucky 

into southernmost Illinois toward the Mississippi River Valley (Fig. 1.2).  The Rough Creek 

Graben, like the Rome Trough, is a complex graben structure.  The northern boundary of the 

graben is the Rough Creek and Shawneetown Fault Systems (RCFS in Fig. 1.2).  The southern 

boundary is the Pennyrile Fault System (PFS in Fig. 1.2). It, also like the Rome Trough, created 

significant accommodation space for Early to Late Cambrian sediments (Ervin and McGinnis, 

1975; Nelson and Zhang, 1991; Thomas, 1991; Johnson and others 1994; Marshak and Paulsen, 

1996, Hickman, 2011).  The fact that both the Rough Creek Graben and the Rome Trough are 

filled with sediment of similar ages, indicates they are likely similar in age (Hickman, 2011).  The 

Rough Creek Graben (Fig. 1.2) is located in the extreme western edge of the study area for this 
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research (Fig. 1.1), and most of the data that will be used in this thesis are located outside of the 

Rough Creek Graben. 

Stratigraphy 

The study interval is the confining interval above the Mount Simon Sandstone in 

Kentucky, which is the Eau Claire Formation in the west and parts of the Conasauga Group in the 

east (Fig. 1.4).  Drillers have used both terms interchangeably across a wide area [and in older 

wells used the term, Rome Formation, which is now restricted to older strata in the Rome 

Trough (Harris and others, 2004)].  The overlap of the areas in which the terms Eau Claire and 

Conasauga were used, caused Greb and Solis (2009) to pick a somewhat arbitrary boundary 

between the two units along the Grenville Front (Fig. 1.5).  A better understanding of the 

boundary between these two units and of lithologic transitions between units is one of the goals 

of this thesis.                 

 

Figure 1.4.  Regional stratigraphy of the study interval across Kentucky.  From Greb and Solis 
(2009).                                                                                     
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of Eau Claire, more than 14,000 ft, occurs in the Rough Creek Graben in Western Kentucky (Greb 

and Solis, 2009; Hickman, 2011), but this is because the sedimentary fill in the Rome Trough has 

not been stratigraphically subdivided as has been done in the Rome Trough.  In Indiana, Illinois, 

and Kentucky, the Eau Claire is dominated by shale.  The thickness and shaly character of the 

Eau Claire Formation are characteristics that give it good caprock potential.  

Regionally, the Eau Claire Formation is lithologically variable, although shale dominated.  

Shales range from green, to maroon, to black in color and are variably micaceous and glauconitic 

(Gutstadt, 1958; Becker and others, 1978; Frailey and others, 2005; Wickstrom and others, 

2005; Neufelder, 2011).  Aside from shale, the Eau Claire also contains siltstones, sandstones, 

dolomites, and limestones.  Sandstones and siltstones can be variably feldspathic, dolomitic, and 

glauconitic (Gudstadt 1958; Becker and others, 1978, Shaver and others, 1986; Catacosinos and 

Daniels, 1991). Micropores in the shale are filled with diagenetic feldspar, dolomite cement, 

quartz cement, and clay minerals (Wickstrom and others, 2005; Neufelder, 2011). Limestone 

and dolomite can occur at the top of the Eau Claire Formation in parts of western Kentucky.  

These carbonates may be equivalent to the Davis Limestone (part of the Knox Group) in Indiana, 

although the Davis is not a formal unit in Kentucky (Fig. 1.4).   

Conasauga Group 

The Conasauga Group was named by Hayes (1892), as the Conasauga Shale, found in the 

Conasauga Valley in northwestern Georgia (Hayes, 1892).  Rodgers (1953) identified shales of 

the Conasauga Group in eastern Tennessee, alternating with carbonates.  The unit was later 

extended into the subsurface of eastern Kentucky and Ohio.  The Conasauga Group has more 

lithologic diversity than the Eau Claire Formation.  The upper units are Late Cambrian 

(Ferungian) in age, and the lower units in the Rome Trough are possibly Early Cambrian in age 
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medium-grained, moderately to well-sorted, and grains are sub-rounded to angular (Wickstrom 

and others, 2005).  Authigenic and primary feldspar, glauconite, and bioturbated  zones within 

the sandstones are common (Wickstrom and others, 2005).  Limestones of the Conasauga Group 

thicken eastward and southward into the Rome Trough (Fig. 1.6).  Dolostones within the 

Conasauga Group are light-to medium- gray or pinkish- gray in color.  They can be 

cryptocrystalline, microcrystalline, medium crystalline, and arenaceous.  Thin interbeds of grey 

to black shale have also been noted in Conasauga carbonates.  Frosted quartz grains, selenite-

filled vugs, dolomite crystals, pelloids, ooids, pyrite, and thin beds of glauconite, and apatite are 

present (Wickstrom and others, 2005). 

 Understanding lateral and vertical variability in rock types and porosity within the 

Conasauga Group will be important for evaluating the potential of this unit to be an adequate 

confining unit for deeper CO2 sequestration.  Formations in the lower Conasauga Group, which 

are confined to the Rome Trough and do not overly the Mount Simon Sandstone, were not 

included in this study.  

Kerbel Formation 

The Kerbel Formation was named by Janssens (1973), and is included within the 

Conasauga Group in Ohio (Fig. 1.4). The Kerbel Sandstone is stratigraphically at the base of the 

Knox Group, and possibly at the top of the Conasauga Group in northern Kentucky (Banjade, 

2011).  This term is not used in Kentucky, but unnamed sandstones have been encountered 

locally in the Maryville Limestone (slightly older than the Kerbel in northern Ohio) within the 

Conasauga Group (Harris and others, 2004).   

In Ohio, the Kerbel Formation is interpreted to have been deposited by a prograding 

delta (Janssens, 1973) or a tidal environment (Donaldson and others, 1975).  Baranoski (2007) 
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noted a series of sandstones in Ohio between what was traditionally called the Kerbel and 

Mount Simon sandstones.  He proposed replacing the term ”Kerbel” and including all of these 

sand bodies in a new formation called the Sandusky Formation.  The Sandusky Formation would 

interfinger with the Conasauga Formation or Group to the east and Eau Claire Formation to the 

west.  The Sandusky Formation has not been formalized in Ohio. 

Mount Simon Sandstone and Equivalents 

The Mount Simon Sandstone was named by E. O. Ulrich for outcrops on Mount Simon, 

in Eau Claire, Wisconsin (Walcott, 1914). The Mount Simon is the largest potential reservoir for 

CO2 sequestration within the study area.  It unconformably caps the Precambrian surface across 

much of the Midwest.  The sandstone is conformably overlain by the Eau Claire Formation in the 

west, and by the upper part of the Conasauga Group, generally the Maryville Formation, in 

eastern Kentucky (Fig. 1.4).  

The Mount Simon is restricted to the area north of the Rough Creek Graben in western 

Kentucky, and north of the Rome Trough in eastern Kentucky (Fig. 1.7; Greb and Solis, 2009).  

Sandstone units also occur in the Rome Trough (in fact, there is a basal sand above the 

Precambrian in the trough), but based on limited seismic reflection data and deep- well control, 

they are not connected to the Mount Simon regional aquifer, are generally thousands of feet 

deeper, and are much older than the Mount Simon Sandstone (Greb and Solis, 2009; Harris and 

others, 2004).   

Basal sandstones in northeastern Kentucky and southern Ohio are sandstones above the 

Precambrian unconformity and below the Conasauga Group, but they are more feldspathic or 

shaly than the typical Mount Simon to the west.  For regional mapping purposes, the Mount 

Simon, basal, and Potsdam sandstones (of the northern Appalachian basin) are commonly 
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Collaboration with Ongoing CO2 Investigations  

Data and test analyses on the Eau Claire Formation and Conasauga Group have recently 

been collected from a series of demonstration wells by U.S. Department of Energy (DOE)-funded 

carbon- storage projects.  Some of those data and results from those studies are available for 

use and comparison in this study (e.g., Neufelder, 2011; Zhang and Scherer, 2012). This thesis 

research was partly supported by the Simulation Framework for Regional Geologic CO2 Storage 

Infrastructure along Arches Province of Midwestern U.S. project. This project is DOE-funded and 

managed by Battelle in Columbus, Ohio.  The project involves computer-modeling industrial-

scale CO2 injections at multiple sites along and near the Cincinnati Arch to determine the 

feasibility of long-term injection in the Mount Simon Sandstone reservoir.  A better 

understanding of the confining intervals above the Mount Simon Sandstone is critical to future 

modeling and implementation of carbon storage in this unit. 
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CHAPTER 2: METHODS 

Introduction 

Several methods were used to evaluate the Eau Claire Formation and Conasauga Group 

across the study area. This chapter provides a summary of each method used, why it was used, 

and what data it contributed to the overall evaluation of the geology and confining 

characteristics of the Eau Claire Formation and Conasauga Group.  

Cross Sections  

Seven detailed cross sections were created with 35 wells, using available geophysical log 

data in PETRA® software.  PETRA® is a data management and analysis package used by the 

petroleum industry for subsurface investigations.  Twenty-three wells in Kentucky penetrate the 

Mount Simon Sandstone and potential overlying confining intervals north of the Rough Creek 

Graben and Rome Trough in Kentucky (Fig. 1.1).  Fifteen additional wells are located in southern 

Indiana and Ohio.  Forty-five more wells penetrate the Conasauga Group south of the extent of 

the Mount Simon Sandstone.  Down-hole geophysical logs from these wells were used for 

regional correlation.  Lithologies were interpreted from log signatures to examine the spatial 

variability in rock types within the potential confining interval.  Three sections were correlated 

along regional strike trending southwest to northeast, and four sections were correlated along 

regional dip trending northwest to southeast.  These cross sections helped to better determine 

and understand the lateral relationships between the Eau Claire Formation and Conasauga 

Group.  The study interval was divided into seven units based on vertical changes in geophysical- 

log signatures.             
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Structure and Isopach Maps 

Nine structure maps and nine isopach maps were constructed in PETRA® to show 

thickness and structure of the interval subdivisions and gross thickness and structure of the 

entire interval.  Maps were compared with each other and known structures to test for trends 

and relationships.  Regional structure is also important to document for intervals within the Eau 

Claire-Conasauga interval relative to its use as a confining interval for carbon storage in the 

underlying Mount Simon Sandstone, since injected CO2 would tend to rise until it meets the cap 

rock, and then should expand laterally updip.  Understanding the regional highs and lows, and 

the dip of the cap rock aid in determining where sequestered CO2 might migrate.  More precise 

mapping (seismic and other data) is needed for determining small structural closure or site-

specific structural features.      

Core Descriptions 

Approximately 1,130 ft of total core were described and photographed from four wells 

across the study area to better understand the geology of the Eau Claire/Conasauga interval and 

for comparison with down-hole geophysical-log signatures (Table 2.1).  These were the (1) 

Battelle No. 1 Duke Energy well,  in Boone County, Kentucky;  (2) the DuPont No. 1 WAD fee well  

in Jefferson County, Kentucky;  (3) the ODNR DGS 2627 American Aggregates well, in Warren 

County, Ohio; and (4) the USS Chemical U.S. Steel No. 1 well,  in Scioto County, Ohio.  Ohio cores 

were examined at the Ohio Geological Survey’s core facility in Columbus, Ohio. The Kentucky 

cores were examined at the Kentucky Geological Survey’s core repository in Lexington, 

Kentucky.  Both Ohio wells had core for the entire Eau Claire/Conasauga interval.  The Kentucky 

wells only had core for a small portion of the Eau Claire interval.  Lithology, grain size, bedding, 

fracturing, mineralization, and paleontology were observed and recorded from each core.  The  
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core was photographed to document major lithotypes, along with unusual structural and 

bedding characteristics of the rock. 

Thin Sections  

Thin sections were made from two Kentucky cores; the DuPont No. 1 WAD fee well in 

Jefferson County, and the Battelle No. 1 Duke Energy well at East Bend in Boone County.  A total 

of 15 thin sections were made and described.  Ten thin sections were taken from the DuPont 

core, and five thin sections were taken from the East Bend core.  Samples were sent to an 

outside laboratory (Wagner Petrographic) for thin section production.  Standard, 24 x 26 mm 

slides were impregnated with blue epoxy, and were vacuum impregnated to optimize the 

visibility of pore spaces within the samples.  Slides were taken from samples representative of 

major lithologies in the core, special and unusual features that might affect the local sealing 

characteristics of the zone, and features that might help to interpret original depositional 

environments.  

Cuttings Descriptions 

To supplement the sparse distribution of available core, cuttings were described for the 

Eau Claire/Conasauga interval in six wells, all in Kentucky (Table 2.2).  Cuttings are the chips of 

Core Description Wells
Well Name UWI Number County State  Top depth (ft) Bottom Depth (ft) Thickness (ft) Interval

DuPont No. 1 WAD FEE 16111000010000 Jefferson KY 4408.4 4459.6 51.2 Davis Limestone
DuPont No. 1 WAD FEE 16111000010000 Jefferson KY 4842 4871.71 29.71 Eau Claire
BATTELLE 1 DUKE ENERGY 16015000050000 Boone KY 2825 2857.61 32.61 Eau Claire
ODNR DGS 2627 AMERICAN AGGREGATES 3416562627 Warren OH 2640 3250 610 Conasauga
USS CHEM./US STEEL 1 USS CHEMICALS 3414570212 Scioto OH 4984.1 5390.9 406.8 Conasauga

Table 2.1.  Core examined for this study. 
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subsurface rock strata collected during drilling.  In general, cuttings are collected at ten-foot 

intervals.  They are not as useful as core for describing details of bedding and lithology and can 

sometimes represent mixtures of rock from higher in the borehole.  In the absence of core, 

however, cuttings provide useful information on mean rock type and mineralogy.  Cuttings were 

described at the Kentucky Geological Survey’s core repository with a petrographic microscope at 

100x magnification.  Wells were chosen based on availability and location across the study area.  

Cuttings were described with the purpose of looking for variations in lithology across the study  

 

Table 2.2.  Wells with cutting samples, depths of samples studied, and correlative sample 
intervals examined in this investigation.  

   

Cuttings Well List
Well UWI Number County State Top Depth (ft) Bottom Depth (ft) Unit within Eau Claire
Ashland 1 Wilson 16037000070000 Campbell KY 2900 2910 Unit 4
Ashland 1 Wilson 16037000070000 Campbell KY 3000 3010 Unit 5
Ashland 1 Wilson 16037000070000 Campbell KY 3100 3110 Unit 6
Ashland 1 Wilson 16037000070000 Campbell KY 3200 3210 Mount Simon
Ashland 1 Wilson 16037000070000 Campbell KY 3150 3160 Unit 6/ Unit 7
BATTELLE 1 DUKE ENERGY 16015000050000 Boone KY 2800 2810 Unit 3
BATTELLE 1 DUKE ENERGY 16015000050000 Boone KY 2850 2860 Unit 3
BATTELLE 1 DUKE ENERGY 16015000050000 Boone KY 2900 2910 Unit 3
BATTELLE 1 DUKE ENERGY 16015000050000 Boone KY 2950 2960 Unit 4
BATTELLE 1 DUKE ENERGY 16015000050000 Boone KY 2970 2980 Unit 4
BATTELLE 1 DUKE ENERGY 16015000050000 Boone KY 2990 3000 Unit 4
BATTELLE 1 DUKE ENERGY 16015000050000 Boone KY 3050 3060 Unit 5
BATTELLE 1 DUKE ENERGY 16015000050000 Boone KY 3100 3110 Unit 5
BATTELLE 1 DUKE ENERGY 16015000050000 Boone KY 3140 3150 Unit 6
BATTELLE 1 DUKE ENERGY 16015000050000 Boone KY 3200 3210 Unit 7
Monitor Petroleum 16175001450000 Morgan KY 5560 5570 Unit 3
Monitor Petroleum 16175001450000 Morgan KY 5700 5710 Unit 3 A
Monitor Petroleum 16175001450000 Morgan KY 5800 5810 Unit 4 
Thomas 1 Adams 12442 Lewis KY 4015 4020 Unit 6
Thomas 1 Adams 12442 Lewis KY 4050 4055 Unit 6
Thomas 1 Adams 12442 Lewis KY 4085 4090 Unit 6
Thomas 1 Adams 12442 Lewis KY 4095 4100 Unit 6
Ashland Oil and Refining 16043000800000 Carter KY 5090 5100 Unit 5
Ashland Oil and Refining 16043000800000 Carter KY 5140 5150 Unit 6
Ashland Oil and Refining 16043000800000 Carter KY 5185 5190 Mount Simon
Ashland Oil and Refining 16043000800000 Carter KY 5200 5210 Mount Simon
UFG 9061T RAWLINGS 16161000290000 Mason KY 2850 2860 Unit 3
UFG 9061T RAWLINGS 16161000290000 Mason KY 2900 2910 unit 3 A
UFG 9061T RAWLINGS 16161000290000 Mason KY 3050 3060 Unit 4
UFG 9061T RAWLINGS 16161000290000 Mason KY 3120 3130 Unit 5
UFG 9061T RAWLINGS 16161000290000 Mason KY 3160 3170 Unit 5 / Unit 6 Boundary
UFG 9061T RAWLINGS 16161000290000 Mason KY 3240 3250 Unit 6 / Unit 7 Boundary
UFG 9061T RAWLINGS 16161000290000 Mason KY 3300 3305 Mount Simon
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area, both vertically and horizontally, and for comparison with down-hole geophysical well 

signatures.  Special focus was placed on the amount of dolomitized versus limestone material in 

the Conasauga Group, as well as the presence of any quartz sand.   

Porosity and Permeability  

Study of the porosity and permeability of the Eau Claire Formation and Conasauga 

Group interval are important for understanding its suitability as a potential confining interval.  

An acceptable caprock must serve as an impermeable barrier above the underlying reservoir.  

Porosity is the percentage of pore space available within a unit.  Permeability is the level of 

connectivity between pore-space and how well a fluid is able to move through the unit 

(Schlumberger Oil Field Glossary, 2012).  Permeability is more critical to caprock evaluation but 

requires core samples and analyses.  Porosity can be determined from density logs and from 

core samples and analyses.  

Permeability data from previous studies were available for the DuPont No. 1 WAD fee 

well, the Battelle No. 1 Duke Energy (East Bend) well, and the USS Chem./US Steel No. 1 USS 

Chemicals (Aristech) well.  These data were placed within the stratigraphic subdivisions of this 

report to better evaluate vertical and lateral permeability relative to lithology and correlations.  

Total Organic Carbon 

Aside from acting as physical barriers to the vertical migration of CO2, if shales have 

sufficient organic content, they may actually adsorb CO2 onto their matrix (Nuttall and others 

2005), making them an even better caprock.  Harris and others (2004) noted that the Conasauga 

Group locally contains dark shales, which may have significant total organic carbon.  For this 

thesis, six shale samples from the Eau Claire Formation and Conasauga Group were analyzed for 

total organic carbon (TOC) from core in the DuPont No. 1 WAD fee well and Battelle No. 1 Duke 
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Energy (East Bend) well, to determine if adsorption might be possible in part of the confining 

interval.  TOC samples were taken from shales in core that appeared to be darkest in color, 

which are most likely to have the highest organic content.   

X-Ray Fluorescence 

 Analysis by X-ray fluorescence (XRF) was used to assess the elemental makeup of the 

units.  X-Ray fluorescence works by bombarding a sample with X-rays, exciting electrons to a 

higher orbital from atoms that make up the sample.  The fluorescence of the sample is then 

measured as excited atoms fall back to their original orbitals.  Results reveal elemental makeup 

in parts per million (ppm).  X-ray fluorescence is advantageous because it is non-destructive to 

the sample.    

During the initial part of the study, CIMAREX Oil and Gas Production Company allowed 

the use of a Thermo Scientific Niton XL3 portable XRF device for this thesis.  The handheld 

instrument is designed to collect field data on the chemical composition of materials (Fig. 2.1). 

This type of x-ray fluorescence data is different than standard lab analyses, in which samples are 

analyzed on a stationary analyzer in a laboratory setting with documented calibration to 

standards.  The portable devices, however, are used in a wide variety of applications where a 

mobile device is beneficial.  These devices are not widely used in geology, but the opportunity 

allowed for experimentation of the device on core and cuttings.  Samples were collected using 

standard protocols and safety guidelines for the device to determine if use of this type of device 

might provide useful information for correlation and base-line elemental composition of the 

shale for more-detailed future analyses in the study interval.  

XRF data were collected from cuttings and core samples in four wells in the study area; 

Core samples were analyzed from the DuPont No. 1 WAD fee well in Jefferson County, and the 
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Battelle No. 1 Duke Energy well in Boone County.  Cuttings samples were analyzed from these 

wells and from the Ford No. 1 Conner well in Boone County, and the Ashland No. 1 Wilson well 

in Campbell County, Kentucky.  Although cuttings represent mixing of an interval and can be 

contaminated from admixtures of up-hole rock material, they are all that is available for 

collecting rock data where there are few cores.   

 For core samples, the device was held directly on core, measuring a site on the core 

roughly one inch in diameter.  For core, samples were collected at 1- to 2- ft spacing.  The trigger 

was depressed for 75 seconds to collect readings on major element oxides and trace elements 

from each collection site on the core.  Information was stored into the instrument and then 

downloaded to a laptop computer in a Microsoft Excel spreadsheet.  For cuttings, representative 

samples were collected from 10- to 20-ft-interval sample bags on file in the Kentucky Geological 

Survey well sample library.  When measuring cuttings, the handheld device was installed into a 

docking station platform, connected to a laptop computer with installed software for the device.  

Cuttings were prepared by pouring a sample into a disposable, plastic sample cup, 

approximately 1 inch in diameter, by ½ inch high, with a clear film bottom and placing it into the 

measurement chamber.  The device was then activated by the laptop computer to begin 

sampling, and data was collected for 75 seconds per sample.  Results were downloaded to the 

laptop computer in raw ppm values in Microsoft Excel format.  The device was calibrated to a 

standard at the beginning of the day, but not for each collection run. 

To check for accuracy between the hand-held XRF device and traditional laboratory 

analyses, data collected from the Battelle No. 1 Duke Energy well core with the hand-held 

device were compared with major oxide data analyzed from the core using standard laboratory  
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methods with a mass spectrometer (Neufelder, 2011) at the same depths in the core.  

Comparison between datasets and results of XRF analysis are presented in the next chapter.   

Stable Isotopes 

Stable-isotope analysis is the process of measuring stable-isotopic ratios with a sample 

against a known standard.  An attempt was made to evaluate shale samples from core for 

carbon and nitrogen stable- isotopic ratios to possibly aid in stratigraphic correlations, and to 

better understand depositional facies.  Samples as large as 30 mg were run using an elemental 

analyzer coupled with a mass spectrometer at the University of Kentucky Department of Earth 

and Environmental Sciences stable isotope laboratory.  Results yielded peaks too low to be 

reliable, as samples did not contain enough of the isotopes to get a good reading.  Future 

workers may try to lower the helium dilution in an attempt to achieve a meaningful peak.   

 

 

 

 

 

 

Figure 2.1.  A Thermo Scientific Niton 
XL3 portable XRF device was used to 
analyze shale chemistry in the core.  
Data on major, minor, and trace 
elements were collected.  
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Cross Section Subdivisions 

Unit 1 

  Unit 1 is the uppermost subdivision in the study interval. It is mostly equivalent to the 

Maynardsville Limestone of the Conasauga Group to the east.  The top of Unit 1 is the base of 

dolomites in the overlying Knox Group (Fig.3.2).  This top is sharp in some logs and gradational in 

others.  The base of Unit 1 is the base of the lowest carbonate in the interval, or the top of thick, 

underlying shale (Fig. 3.2).  This underlying shale is the Nolichucky Shale of the Conasauga Group 

in the east.  The base of unit 1 is generally picked at a laterally consistent vertical change in the 

gamma and porosity (density or neutron) logs from shale to limestone.  Unit 1 is traceable 

across much of the region.  On the eastern edge of the study area, the Conasauga Group 

consists of thick carbonates, and the base of Unit 1 cannot be accurately determined, so is not 

correlated in that area.  

Unit 2   

 Unit 2 is mostly shale with some interbedded siltstone and limestone.  The upper 

boundary is placed at the base of the lowest significant carbonate in Unit 1 (Fig. 3.2; base of the 

Maynardsville Limestone in the east).  The base of Unit 2 is the top of a thick carbonate in Unit 

3, which may have a sharp or gradational contact (Fig. 3.2).  The middle part of the unit contains 

laterally persistent high-gamma shale.  The base of the high-gamma shale is possibly a maximum 

flooding surface.  Zones of slightly calcareous siltstones are interbedded regionally, and thicken 

eastward.  Unit 2 is traceable across the entire extent of the study area, especially the middle 

high-gamma part of the unit.  The high-gamma zone can be readily correlated westward into the 

upper part of the Eau Claire Formation in the Illinois Basin.  Unit 2 is mostly equivalent to the 

Nolichucky Shale of the Conasauga Group in the eastern region of the study area.  However, the 
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base of the Nolichucky is variably picked in the subsurface, especially westward where the 

Maryville Limestone thins.  To the west where Conasauga terminology is applied, Unit 2 only 

comprises the upper part of what would normally be defined as the Nolichucky Shale (see cross 

sections C-C’, I-I’, F-F’, L-L’, and B-B’ for example).  Similarly, the base of Unit 2 is the top of the 

Maryville Limestone (Conasauga Group) in the eastern part of the study area, but the top of the 

Maryville sequentially drops eastward, below the base of Unit 2. 

 Core showing Unit 2 was available from two wells within the study area.  The first was 

the ODNR DGS 2627 American Aggregates, in Warren County, Ohio. The second was the USS 

Chem/US Steel No. 1 USS Chemical (Aristech) well in Scioto County, Ohio.  These are described 

in the Core Descriptions section.  

Unit 3   

 Unit 3 consists of limestone, calcareous siltstone, and shale.  The top of Unit 3 is 

approximately the base of the Nolichucky Shale and Unit 2 to the east (Fig. 3.2).  In the central 

and eastern parts of the study interval the top of Unit 3 correlates to a flooding surface above a 

fining upward interval at the base of Unit 2 (cross sections C-C’ and I-I’ for example).  The base 

of Unit 3 is drawn at a shale break in the thick Maryville carbonates to the east. The cross 

sections show that the thick Maryville Limestone in the east consists of a series of stacked 

carbonates (300- to 650-ft thick) separated by thin shale or density-log breaks.  These breaks in 

log signature can be traced laterally into thickening wedges of shales and siltstones.  Three of 

these breaks were used to define units within the interval.  Unit 3 is the uppermost of these 

stacked carbonate units.   

The base of Unit 3 is also a possible flooding surface.  Westward from where Unit 3 is a 

thick carbonate, it grades into shales and siltstones and appears to consist of multiple 
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coarsening-upward intervals (possible parasequences), which are limestone-rich at the top, and 

shaly at their base.  Unit 3 was divided into Units 3 and 3A where two distinct log profiles could 

be distinguished. Unit 3A has a lower density signature. 

Core showing Unit 3 was available in three wells.  The wells are (1) ODNR DGS 2627 

American Aggregates in Warren County, Ohio; (2) Battelle No. 1 Duke Energy well, in Boone 

County, Kentucky ; and (3) the USS Chem/US Steel  No. 1 USS Chemical well, Scioto County, Ohio 

(Aristech well).  Core descriptions are summarized in the Core Descriptions section.  Cuttings for 

Unit 3 were examined in three wells.  (1) The Battelle No. 1 well, (2) the Monitor Petroleum No. 

1 Stacy Heirs well in Morgan County, Kentucky, and (3) the UFG 9061 T Rawlings well in Mason 

County, Kentucky.  Summaries of cutting analyses are described in the Cuttings Descriptions 

section.  

Unit 4  

 Unit 4 consists of limestone, calcareous siltstone, and shale.  Some limestones may be 

dolomitic (based on density-log signatures), especially in lower parts of the unit. The top of Unit 

4 in the eastern part of the study area is picked at the top of a thick carbonate (usually 

limestone).  In many areas this would be equivalent to the top of the Maryville Limestone of the 

Conasauga Group (Fig. 3.2).  In some areas, Unit 4 represents a distinct tongue of the Maryville 

Limestone.  The top is traced laterally westward to the top of a silty carbonate or siltstone.  Unit 

4 grades from carbonates in the east to siltstones and shales westward.  Unit 4 becomes much 

more homogenous and silty westward (see cross section C-C’ for example).  The upper contact 

of Unit 4 is likely a marine flooding surface.  Carbonates in Unit 4 extend further west than the 

carbonates in Unit 3. Unit 4 was divided into Units 4A and 4B where two distinct tongues or 

coarsening-upward intervals could be distinguished. 
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Two wells with core that showed Unit 4 were available for study in the study area.  The 

first was the Warren County well, and the other, the Scioto County (Aristech) well.  Core 

descriptions are summarized in the Core Descriptions section.  Cuttings for Unit 4 were 

examined in four wells.  These were (1) the Ashland No. 1 Wilson well in Campbell County, 

Kentucky; (2) the Battelle No. 1 Duke well; (3) the Morgan County well; and (4) the Mason 

County well.  Summaries of cutting analyses are described in the Cuttings Descriptions section.  

Unit 5   

 Unit 5 consists of limestone, dolomite, sandy dolomite, calcareous siltstone, thin 

sandstones, and shale.  The top of Unit 5 is another distinct break in carbonate signatures in the 

eastern part of the study area (not well-developed in Fig. 3.2).  The top is a thick, low-gamma 

carbonate in the middle part of the study area, and its apparent lateral equivalents are silty 

carbonates or siltstones to the west.  The base of Unit 5 is the base of the thick, low-gamma 

carbonate in the eastern and middle parts of the study area (Fig. 3.2) and its lateral equivalent 

westward.  Unit 5 is composed of mixed lithologies.  Unit 5 grades from calcareous silts in 

extreme western sections of the study area, to a prominent carbonate in the middle and eastern 

parts of the study area (see cross sections C-C’ and I-I’ for example).  In some areas, Unit 5 

represents a distinct tongue of the Maryville Limestone.  Density-log signatures indicate the 

carbonate is limestone across much of the study area, but becomes dolomitic in the lower half, 

especially toward the east.  In some areas where it is dolomitic, it may contain sandy zones and 

sandstone stringers.  Unit 5 was divided into Units 5A and 5B where two distinct tongues or 

coarsening-upward intervals could be distinguished. 

Core was available for Unit 5 in two wells in the study area.  The first was the Warren 

County well, and the other was the DuPont No. 1 WAD fee well, in Jefferson County, Kentucky.  
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Core descriptions are summarized in the Core Descriptions section.  Cuttings were examined in 

three wells across the study area. These were (1) the Battelle No. 1 well, (2) the Ashland Oil and 

Refining well in Carter County, Kentucky, and (3) the Mason County well.  Summaries of cutting 

analyses are described in the Cuttings Descriptions section.  In particular, intervals were chosen 

which looked as if they might contain sandstones based on log signatures.  

Unit 6   

 Unit 6 consists of limestone, dolomite, sandy dolomite, calcareous siltstone, thin 

sandstones, and shale.  In the eastern portion of the study area, Unit 6 is composed of shalier 

carbonates (higher gamma) or interbedded thin carbonate and shales and calcareous siltstones 

than Unit 5 (Fig. 3.2). The top of Unit 6 is the base of a low-gamma carbonate within the 

Maryville Limestone to the east and laterally correlative westward.  The base of Unit 6 is the 

base of the carbonate interval (Units 4 through 6) across much of the eastern study area, 

overlying a shalier and sandier interval in Unit 7 below (Fig. 3.2).  Shales are included in the 

lower sections of Unit 6 in the eastern and middle sections of the study area.  The contact 

between the top of Unit 6, and the base of Unit 5 is often sharp, although where carbonates in 

Unit 5 grade into siltstones and shales westward, the boundary is less distinct. In the eastern 

part of the study area, Unit 6 may be sandy in places, and carbonates may be dolomitic (based 

on density log signatures and some cuttings).  The unit is subdivided into Units 6A and 6B locally 

where there were distinctive changes from clastic-dominated to carbonate-dominated log 

signatures in the unit (see cross sections C-C’, and I-I’ for example).  

Core for Unit 6 was available in the Warren County well.  Core descriptions are 

summarized in the Core Descriptions section. Cuttings within Unit 6 were observed in five wells 

across the study area.  These were (1) the Campbell County well; (2) the Battelle No. 1 well; (3) 
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the Thomas No. 1 Adams well in Lewis County, Kentucky; (4) the Carter County well; and (5) the 

Mason County well.  Special attention was focused on intervals of cuttings with possible 

sandstones or sandy carbonates on density logs to determine if there was actually sandstone in 

the interval. Summaries of cutting analyses are described in the Cuttings Descriptions section.  

Unit 7  

 Unit 7 was identified to highlight a relatively high-gamma section above the Mount 

Simon Sandstone at the base of what is mapped as Maryville Limestone in the eastern part of 

the study area (Fig. 3.2). Unit 7 has variable lithology and consists of sandy to silty shale, 

siltstone, sandstone, limestone, and dolomite.  The top of Unit 7 is the base of a carbonate or 

siltstone in Unit 6 or 6B.  The base of Unit 7 is the top of the traditional Mount Simon Sandstone 

top or “Basal” sandstone (Fig. 3.2).  Unit 7 grades upward into the base of the Maryville 

Limestone, Conasauga Group (eastern part of Unit 6) in the extreme eastern regions of the 

study area where it is no longer traceable as a distinct unit (see cross sections C-C’, I-I’, B-B’, L-L’, 

and F-F’ for example).  Subunits 7A and 7B were used for correlative purposes to separate locally 

distinctive parts of Unit 7.  

Core for Unit 7 was available in the Warren County well.  Core descriptions are 

summarized in the Core Descriptions section. Cuttings were observed in three wells across the 

study area.  These were the Campbell County well, the Battelle No. 1 well, and the Mason 

County well.  Summaries of cutting analyses are described in the Cuttings Descriptions section.  

Mount Simon Sandstone or Basal Sandstone   

 The Mount Simon Sandstone is composed of sandstones, siltstones, and shales 

immediately capping the Precambrian unconformity surface.  Eastward in the Appalachian 
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Cross Section C-C’ 

 The first cross section (Fig. 3.4) runs along strike, following the Kentucky/Indiana border, 

from through northern Kentucky, then northeastward into south-central Ohio (Fig. 3.1, Table 

3.1).  Unit 1, the Maynardville Limestone, thins before pinching out between the Battelle No. 1 

Duke Energy well and Ford No. 1 Conner well (well nos. 3 and 4 in Fig. 3.4), in the western part 

of the section.  Unit 2 (Nolichucky Shale) is present across the entire section.  Units 3, 4, and 5 

are carbonates to the northeast (Maryville Limestone) that interfinger westward with shales and 

siltstones of the Eau Claire Formation.  The transition from mostly carbonates to mostly shales 

occurs between the Amerada Petroleum well, and the ODNR DGS 2627 (Warren County) well 

(well nos. 6 and 7 in Fig. 3.4), which is across the Grenville Front.  Unit 6 consists of carbonates 

mixed with silts and shales, and is variably sandy.  Unit 6 is the base of the Maryville Limestone  

 

Table 3.1.  Table showing names and location of wells for cross section C-C’.  The number          
assigned to each well in the table corresponds with the number above each well in the cross 
section (Fig. 3.4). 

 

 

  

 

 

 

 

 

Cross Section 
C-C' 
Number Well County State 

1 DuPont No. 1 WAD fee Jefferson  KY 
2 Ashland Exploration No. 1 Sullivan Switzerland  IN 
3 Battelle No. 1 Duke Energy Boone KY 
4 Ford No. 1 Conner Boone KY 
5 Armco Steel No. 1 Armco Butler OH 
6 ODNR DGS 2627 American Aggregates Warren  OH 
7 Amerada Petroleum No. 1 Hume Madison OH 
8 RSC Energy CR400 Consolidation Coal Muskingum OH 
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to the east, but grades westward with silty shales of the Eau Claire Formation.  Unit 7 is also 

laterally consistent across the study area.  It is mostly shaly, however it may be variably sandy 

and contain thin carbonates.  The Mount Simon Sandstone thins westward.  The greatest 

thinning occurs between the Amerada Petroleum No. 1 Hume well (well no. 7 in Fig. 3.4) and the 

RSC Energy CR400 Consolidation Coal well (well no. 8 in Fig. 3.4), where it pinches out. 

Cross Section I-I’  

 Figure 3.5 is a southwest- to northeast-trending strike section (Fig. 3.1, Table 3.2).  This 

section shows how the Eau Claire Formation (western side of section) interfingers with the 

Conasauga Group (eastern side of the section) across the central and southern part of the study 

area, just north of the Rome Trough (Fig. 3.1).  Unit 1 (the Maynardville Limestone) and Unit 2 

(Nolichucky shale) are laterally persistent across the study area.  Unit 2 is thickest in the middle 

of the section, and thins in the eastern and western parts of the section.  Unit 3 is also  

 

 

  

 

 

 

 

  

Cross Section I-I' 
Number Well County State 

1 Union Light Hear 200 Mynear Nicholas KY 
2 UFG 9061T Rawlings Mason KY 
3 Thomas No. 1 Adams Lewis KY 
4 Ashland No. 1 Wolfe Lewis KY 
5 US Chemical US Steel No. 1 USS Chemicals Scioto OH 
6 NuCorp Energy No. 1 Trepanier Jackson OH 
7 Dunigan, EJ No. 1 Hockman Hocking OH 
8 Amoco 1 Ullman Noble OH 

Table 3.2.  Names and location of wells for cross section I-I’ (Fig. 3.5).   The number 
assigned to each well in the table corresponds with the number above each well in the 
cross section. 
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continuous across the study area.  Carbonates in the east grade laterally with shales and 

siltstones in the extreme western part of the section, between the Union Light and Heat 200 

Mynear well and the UFG 9061 T Rawlings well (nos. 1 and 2 in Fig. 3.5), which is across the 

Grenville Front.  Units 4 and 5 (part of Maryville Limestone) are thick carbonates in the east, 

which thin and grade into clastics in the west, also between the Union Light and Heat 200 

Mynear well and the UFG 9061 T Rawlings well, across the Grenville Front.  Units 6 and 7 are 

laterally continuous across the study area.  The Mount Simon Sandstone is much thinner where 

it is present, than in the previous section (Fig. 3.4).   

Cross Section T-T’ 

 This is the third strike section (Fig. 3.6, Table 3.3).  As in the previous strike sections, it 

shows how the Eau Claire Formation interfingers with the Conasauga Group in the central 

portion of the study area.  Unit 1 (Maynardville Limestone) pinches out in the westernmost area 

of the section between the Battelle No. 1 Duke Energy well (well no. 1 in Fig. 3.6) and the  

 

 

Cross Section T-T' 
Number Well County State 

1 Battelle No. 1 Duke Energy Boone KY 
2 Ashland No. 1 Wilson Campbell KY 
3 Spencer Petroleum No. 1 Griffith Brown OH 
4 Oxford Oil No. 1 Irvine Ross OH 
5 Well Supervision No. 1 Immell Ross OH 
6 Ramco Oil and Gas No. 1 Kerns Pickaway OH 
7 Poling, R C No. 1 Rush Creek Partners Perry OH 
8 Lakeshore Pipeline No. 1 W Marshall Comm Guernsey OH 

Table 3.3.  Names and location of wells for cross section I-I’ (Fig. 3.6).  The number assigned to 
each well in the table corresponds with the number above each well in the cross section. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
d
w

Figure 3.6. Cro
distances betw
well names. 

oss section T-
ween wells.  S

GF
 

 

-T’.  See locat
See Figure 3.3

41 
 

ion map (Fig.
3 for explanat

. 3.1) for well 
tion of color s

locations and
shading.  See

1 
2 

3 
4 

5 
6 

7 
8 

d true 
e Table 3.1 forr 



42 
 

continuous across the study area.  It is mostly silty shale, but includes carbonates to the east.  

Units 4 and 5 (part of the Maryville Limestone) thin into the Eau Claire Formation westward, 

Ashland No. 1 Wilson well (well no. 2 in Fig. 3.6).  Unit 2 (Nolichucky Shale) is present across 

most of the section and thins into the Conasauga Group in the last well to the east.  Unit 3 thins 

in the Oxford Oil No. 1 Irvine well (well no. 4 in Fig. 3.6), near the Grenville Front.  Units 6 and 7 

are also continuous across the section.  The Mount Simon Sandstone thins eastward as the 

Precambrian basement appears to rise in elevation relative to the datum at the base of the 

Knox.  Basal sands to the east (non-blocky sandstone log signatures) appear to overlap the 

Mount Simon Sandstone (blocky log signature) in the eastern and central areas of the section 

within Unit 7 (Fig. 3.6). 

Cross Section B-B’ 

Cross section B-B’ (Fig. 3.7, Table 3.4) is a dip section (Fig. 3.1).  The section highlights 

changes in the study interval from northwest to southeast, across the Kentucky River Fault 

System into the Rome Trough.  Unit 1 (Maynardville Limestone) and Unit 2 (Nolichucky Shale) 

thicken across the Kentucky River Fault System into the Rome Trough.  Unit 3 extends across the 

northern margin of the Rome Trough, but does not thicken as much as the units immediately 

above and below it.  Unit 3 consists of silty shales to the west, and shales, carbonates, and thin 

sandstones or sandy carbonates in the central and eastern parts of the section.  Units 4 and 5 

(parts of the Maryville Limestone) grade into calcareous siltstones of the Eau Claire Formation 

northwestward.  The Maryville Limestone thickens significantly thicken into the Rome Trough, 

but Units 4 and 5 were not correlated into the trough because the distinctive shale breaks 

chosen to subdivide the units north of the trough could not be accurately picked within the 

trough.  Units 6 and 7 thin southward and pinch out just north of the Rome Trough, where the  
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Cross Section B-B' 
Number Well County State 

1 ODNR DGS 2627 American Aggregates Warren  OH 
2 Spencer Petroleum No. 1 Griffith Brown OH 
3 Commonwealth Gas No. 1 Covert Adams OH 
4 Thomas No. 1 Adams Lewis KY 
5 United Fuel Gas 9060 Shephard Lewis KY 
6 Ashland Oil and Refining 11-1 Stapleton Carter KY 
7 Ashland Exploration No. 1 Kazee Elliott KY 

 

Precambrian surface appears to rise in elevation relative to the Knox datum.  The Mount Simon 

Sandstone pinches out even farther to the northwest.  The sandstone abruptly thins between 

wells 1 and 2 in Figure 3.7, which is approximately along the Grenville Front.  Basal sandstones 

are present near the lip of the trough, and appear to overlie the Mount Simon Sandstone 

northwestward (in Unit 7). 

Cross Section F-F’ 

This dip section (Fig. 3.1) primarily shows the Eau Claire Formation and its distribution 

southeastward towards the Rome Trough (Fig. 3.8, Table 3.5).  Unit 1 (Maynardsville Limestone) 

is present across the section, although it thins significantly northwestward.  Unit 2 (Nolichucky 

Shale) is also present across the section, and thins significantly southeastward towards the 

Rome Trough.  Units 3 and 4 are continuous across the section.  These consist primarily of silty 

shales and silty carbonates, with local thin sandstones or sandy carbonates.  Units 3 and 4 are 

equivalent to carbonates in the Maryville Limestone to the east, but thick limestones are not 

present in these units in this section.  Unit 5 is absent from the section.  Unit 6 is continuous 

across the section, and rests on Precambrian basement just north of the Kentucky River Fault 

Table 3.4.  Names and location of wells for cross section B-B’ (Fig. 3.7).  The number assigned 
to each well in the table corresponds with the number above each well in the cross section. 
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Table 3.5.  Names and location of wells for cross section F-F’ (Fig. 3.8).  The number assigned to 
each well in the table corresponds with the number above each well in the cross section. 

Cross Section F-F' 

Number Well County State 

1 Ford No. 1 Conner Boone KY 

2 Ashland No. 1 Wilson Campbell KY 

3 Union Light and Heat 200 Mynear Nicholas KY 

4 Ashland No. 1 Miller Clark KY 

5 Triana Energy, LL 1 Thomas, Eugene Clark KY 
 

 

System where the basement appears to rise in elevation (relative to a Knox datum).  Unit 7 is 

present and thins southeastward towards the lip of the Rome Trough.  Unit 7 pinches out 

between wells 2 and 3 in Figure 3.8, a little bit farther to the northwest.   The Mount Simon 

Sandstone dramatically thins and pinches out a little farther northwestward, between wells 2 

and 3, which is close to the position of the Grenville Front.  Possible basal sandstone equivalents 

(in Units 7 and 7A) above the Precambrian on the northern margin of the Rome Trough appear 

to drape the Mount Simon Sandstone northwestward.   

Cross Section L-L’ 

 This dip section (Fig. 3.1) shows the relationship between the easternmost fingers of the 

Eau Claire Formation (Fig. 3.9, Table 3.6) and carbonates of the Conasauga Group.  Like the 

other dip sections, it shows changes across the northern margin of the Rome Trough.  This dip 

section has more carbonate in the study interval than the sections to the west.  Units 1 through 

4 thicken into the Rome Trough.  Units 4 and 5 (part of Maryville Limestone) thin and begin to 

interfinger with siltstones and shales in the northwestern-most part of the section between well 

nos. 2 and 3 in Figure 3.9, which is southeast of the Grenville Front.  Unit 6 pinches out along 
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Table 3.6.  Names and location of wells for cross section L-L’ (Fig. 3.9).  The number assigned to 
each well in the table corresponds with the number above each well in the cross section. 

Cross Section 
L-L 
Number Well County State 

1 Amerada Petroleum No. 1 Hume Madison OH 
2 Minuteman Exploration No. 1 Higgy Pickaway OH 
3 Well Supervision No. 1 Immell Ross OH 
4 Nucorp Energy No. 1 Trepanier Jackson OH 
5 Goldberg, J Stanley No. 1 Payne Lawrence OH 
6 Cyclopse No. 1 Kingery Cabell WV 
7 Exxon 1 McCormick Lincoln WV 

 

 the northern margin of the Rome Trough.  Unit 7 rests on basement from well no. 4 (Fig. 3.9) to 

the southeast on this apparent structural high.  The Mount Simon Sandstone thins and pinches 

out between well nos. 2 and 4 in Figure 3.9.  Well 3 does not extend into the Mount Simon 

Sandstone.  In this section, the Mount Simon extends slightly east of the Grenville Front.  A thick 

sandstone occurs above basement in wells 4 and 5 (Fig. 3.9).  This sandstone has a different 

geophysical log signature from the Mount Simon Sandstone to the northwest.  It likely 

represents a “basal” sandstone, which may or may not be equivalent to Unit 7 northwestward. 

Well no. 3 does not extend deep enough to determine the lateral relationship between these 

two units. 
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Structure Maps   

 Structure maps were made for the top of the Mount Simon/Basal sandstone interval 

(Fig. 3.10), and each unit within the Eau Claire/Conasauga interval (Figs. 3.11-3.17).  Structures 

were mapped to show the subsurface topography and dip of each unit.  The structure maps are 

all similar.  Most show a structural high in the middle and north/middle part of the study area, 

which roughly corresponds to an area west of the Grenville Front.  Structural lows correspond to 

areas in the Rough Creek Graben in western Kentucky and in the eastern Rome Trough in West 

Virginia.  Strata dip eastward into the post-Cambrian Appalachian Basin, and westward into the 

Post-Cambrian Illinois Basin. 

 
 

Figure 3.10.  Top of Mount Simon Sandstone structure.  A mask covers some of the well data 
and faults south of the Kentucky River Fault System in the Rome Trough where Petra 
extrapolated structure from north of the faults. 
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Figure 3.11. Top of Unit 7 structure.  A mask covers some of the well data and faults in the Rome 
Trough where Petra extrapolated structure from north of the faults. 

 

Figure 3.12. Top of Unit 6 structure.  A mask covers some of the well data and faults in the Rome 
Trough where Petra extrapolated structure from north of the faults. 
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Figure 3.13.  Top of Unit 5 structure.  A mask covers some of the well data and faults in the 
Rome Trough where Petra extrapolated structure from north of the faults. 

 

Figure 3.14.  Top of Unit 4 structure.  The top of Unit 4/base of Unit 3 was correlated into the 
Rome Trough. 
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Figure 3.15.  Top of Unit 3 structure.  The top of Unit 3 was correlated into the Rome Trough. 

 

 

Figure 3.16.  Top of Unit 2 (approximately top of the Nolichucky Shale) structure.  The top of 
Unit 2 was correlated into the Rome Trough. 
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Figure 3.17.  Top of Unit 1 structure (top of the Maynardsville Limestone).  Unit 1 was correlated 
into the Rome Trough.  Unit 1 pinches out beneath the Knox Group in the western part of the 
study area.   

 

Figure 3.18.  Top of Eau Claire/Conasauga interval. 
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Isopach Maps 

 Isopach maps were created for each major unit within the Eau Claire/Conasauga interval 

in order to demonstrate regional thickness trends.  Sub-units were not mapped as they served 

to aid in correlations only.  Units 4 through 7 were only mapped north of the Rome Trough 

faults because they could not be correlated with confidence into the trough.  These units, 

however, continue and likely thicken into the Rome Trough (see Fig. 1.6). 

 The Mount Simon Sandstone thins to the south and east, and terminates near the 

northern lip of the Rome Trough (Fig. 3.19).  Unit 7 exhibits relatively uniform thickness across 

the study area, though it thickens slightly in the northeast (Fig. 3.20).  Unit 6 is similar with two 

thick regions to the northeast and southwest (Fig. 3.21).  Unit 5 thickens northeastward (Fig. 

3.22).  North of the faults, Unit 4 thickens eastward (Fig. 3.23).  Units 1 through 3 were mapped 

across the Rome Trough and all units thicken into the trough (Figs. 3.24, 3.35, 3.26).  Unit 3 

thickens the most, and Unit 1 the least.  North of the trough, Units 2 and 3 are thickest to the 

west and thin to northeast.  Unit 1 is more uniform in thickness than some of the other units, 

although a slight thickening trend can be seen eastward (Fig. 3.26).  Unit 1 pinches out westward 

beneath the Knox Dolomite and likely thins more gradually west towards the pinchout than is 

shown by available data.  

 In general, the carbonate-dominated parts of the study interval (Units 1, 4, and 5) 

thicken eastward, and the upper clastic-dominated intervals (Units 2 and 3) thicken westward.  

Several units also exhibit NW–SE-oriented thickness trends north of the Rome Trough. 
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Figure 3.19.  Mount Simon Sandstone isopach. 

 

Figure 3.20.  Unit 7 isopach.  Unit 7 was not correlated into the Rome Trough. 
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Figure 3.21.  Unit 6 isopach.  Unit 6 was not correlated into the Rome Trough. 

 

Figure 3.22.  Unit 5 isopach.  Unit 5 extends and likely thickens into the Rome Trough but was 
not correlated into the trough. 
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Figure 3.23.  Unit 4 isopach.  Unit 4 extends and likely thickens into the Rome Trough but was 
not correlated into the trough. 

 

Figure 3.24.  Unit 3 isopach.  Unit 3 was correlated into the Rome Trough. 
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Figure 3.25.  Unit 2 isopach.  Unit 2 was correlated into the Rome Trough. 

 

Figure 3.26.  Unit 1 isopach.  Unit 1 was correlated into the Rome Trough.  Unit 1 pinches out or 
is truncated beneath the Knox Group to the west.  
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Unit 4-Eau Claire Formation 

The core of Unit 4 consists of silty shale, siltstone, shale, interbedded siltstone and 

shale, and siltstone with shale (Fig. 3.29).  Siltstones are light to medium grey with varying shale 

content. Siltstones are generally massive to finely laminated (Fig. 3.30), and often calcareous 

(“C” in Fig. 3.30); reacting to a 10% hydrochloric acid solution.  Some of the siltstones exhibit 

small, vertical burrows.  Silty shales are light to dark grey, often thinly bedded.  Shales are 

medium grey, very fissile, very brittle, and burrowed (Fig. 3.31). The core have deteriorated 

significantly and little bedding information could be obtained.  Horizontal burrows, small 

brachiopod shells and trilobite fragments were noted on the faces of some shale fragments.  

 Thin sections were made of representative lithologies from the Eau Claire shale in Unit 

1.  Silty shales and shales include laminated to slightly undulatory shale fabrics with muscovite, 

biotite, and silt-size quartz grains in a fine clay matrix, presumably consisting of feldspars and 

quartz (Fig. 3.32). Biotite grains are crudely oriented with the undulatory fabric. Calcareous shaly 

siltstones contain abundant silt-sized quartz grains in a clay-shale matrix, with minor biotite and 

glauconite grains (Fig. 3.33). Bioturbated siltstones contain abundant glauconite grains (Fig. 

3.34).   

“Davis Limestone”  

A limestone capping Eau Claire shales and siltstones in the DuPont well was examined.  

This limestone is equivalent to the Davis Limestone of Indiana.  The Davis is a formal unit in the 

base of the Knox Supergroup in Indiana.  It is not a formal term in Kentucky.  The core is 

examined here as an example of the basal Knox above the Eau Claire/Conasauga interval and for 

comparison with similar types of carbonates in the Maynardsville Limestone in the ODNR DGS 

2627 and USS Chem/US Steel  No. 1 cores (Fig. 3.28).   
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Figure 3.30. Laminated siltstone in Unit 4 in the DuPont No. 1 WAD fee well.  Core 
width is four inches. 

Figure 3.31.  Typical brittle, broken shale in Unit 4 in the DuPont No. 1 WAD fee well.  
Core width is four inches. 
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Figure 3.34.  Photomicrograph of bioturbated siltstone from 4859 ft deep in Unit 1. Note 
abundant glauconite grains. 20x magnification with cross polars. 

 

The Davis core in the DuPont well consists of oolitic grainstones, wackestones, and 

boundstones.  Oolitic grainstones are abundant in the upper part of the core and thrombolites 

are prominent in the lower part of the core (Fig. 3.35).   

Thrombolite boundstones are light to medium grey, and display the unlaminated, 

clotted texture typical of thrombolites (Fig. 3.36A).  Sparse, thin styolites were found throughout 

the dolomite and limestone (Fig. 3.36B).  Some of the clotted textures are irregular to relatively 

horizontal, others show significant up-building (Fig. 3.36C).  A thrombolite in part of the core 

had a sharp vertical contact. 

Oolitic grainstones are light grey, with sparse, thin styolites, and sparse cryptalgal clasts.  

Grainstones are laminated to thin bedded (Fig. 3.36D).  Some ooids were dissolved, leaving 

variable porosity.  In the middle part of the core, ooid wackestones are thin and overly scour  
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Figure 3.36.  Typical features of the “Davis” carbonate in the DuPont well.  (A-D) Thrombolites 
with clotted texture.  (B) Styolite in thrombolite. (C) Up-building or mounded texture.  (D) Sharp, 
vertical contact between thrombolite and laminated ooid grainstone.  (E) Sharp-based shell 
debris lags with oolites.  Scale bars = 2 cm. 

 

surfaces composed of shell debris grainstones (Fig. 3.36E).  Wackestones are light to medium 

grey in color, with abundant fossil shell and thrombolitic fragments.  Sparse, light brown cherty 

bands are present.   

 In thin sections, ooids are dispersed in coarsely crystalline, intergranular calcareous 

cement (Fig. 3.37).  Ooids exhibit a radial fabric, however, concentric laminations are still visible 

in their outer parts.  Many of the small- and medium-sized ooids are replaced by ferrous 

carbonates (blue staining in Fig. 3.37) and dolomite.  Small dolomite rhombs can be seen in 

some of the replacement fillings.  Intergranular voids occur in some of the replaced ooids.  

Minor voids also occur in intergranular cement.  
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Figure 3.37.  Photomicrograph of ooid grainstone in the Davis Limestone from 4412 ft 
deep.  Ferroan carbonates are stained blue. Note replacement of some ooids by ferroan 
carbonates and dolomite. 20 X magnification with cross polars. 

 

Figure 3.38.  Photomicrograph of thrombolite boundstone in the Davis Limestone from 4437 ft 
deep.  Note patchy distribution of fine carbonates and large trilobite fragment. The long, tubular 
structure in the lower right is possibly a burrow. 20 X magnification with cross polars. 
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Battelle-East Bend Well Core Descriptions  

Thirty-two feet of the Eau Claire was cored in the Battelle No. 1 Duke Energy (East Bend) 

well, from depths of approximately 2825 ft to 2857 ft (Fig. 3.40).  This interval is all within Unit 3 

of this investigation, and is composed largely of silty shale and siltstones (Fig. 3.41 A-D).  

 Shales are medium to light gray and are lighter colored where interbedded with 

siltstone.  Shaly intervals tend to be fissile (Fig. 3.41A).  Intervals with interbedded or 

interlaminated siltstones are less fissile.  Thin siltstone interbeds are light grey and horizontal to 

wavy (Fig. 3.41B). 

Small burrows are often filled with silt-sized material and may appear contorted from 

compaction (arrows in Fig. 3.41B).  Sparse, low-angle to vertical slickensides occur throughout 

the shale.  Fossils are uncommon in the shale, but include trilobite fragments (Fig. 3.41A) and 

whole “lingulid” brachiopods (Fig. 3.41B).   

Siltstones are light grey and fine grained, finely laminated, massive, and structure-less 

(Figs. 3.41 C-D).  Some contain contorted lamination or soft-sediment deformation.  Many are 

slightly calcareous, and react moderately to a 10% hydrochloric acid solution.  Siltstones are 

slightly micaceous, and exhibit small, sparse shell and trilobite fragments, and sparse vertical 

and horizontal burrows.   A few fractures in siltstones were filled with calcite, and have been 

compressed, deforming the original fracture plane.  Individual siltstone beds can be as much as 

one ft thick.  Bedding contacts at the base of the siltstones are mostly sharp, but some show 

gradational transitions from shale to silty shale.  Sharp contacts sometimes exhibit load 

structures or soft-sediment deformation (Fig. 3.41D).  
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A B
Figure 3.42.  Marine fossils in the DuPont No. 1 well core.  (A) Trilobite fragment in shale 
matrix at 2827.7 feet deep.  (B) Fossil “lingulid” brachiopod shell in shale matrix at 2825.8 feet 
deep. 

Figure 3.41.  Typical features of the Eau Claire Formation in the DuPont No. 1 well core.  (A) 
laminated shale, and (B-D) interlaminated and interbedded siltstone and shale in the Battelle 
No. 1 Duke Energy core.  Bedding may be flat to undulatory.  (B) Tiny burrows occur beneath 
siltstones (arrows).  In (C) shale, siltstone, and a thin bioclastic and calcareous siltstone or silty 
carbonate are in sharp contact.  Siltstones can have sharp bases (B, D), but often have 
undulatory contacts or are deformed (D).  Scale in cm.

A B 
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In Figure 3.41D, a siltstone is sharply and vertically juxtaposed against a shale, and thin 

bioclastic siltstone or grainstone with tiny shell fragments. The contact of the siltstone with the 

surrounding lithologies is contorted.  

Thin sections were made from representative lithologies in Unit 3.  Silty shales have 

laminated to slightly irregular fabric, which may indicate burrowing (Fig. 3.43).  Shales contain 

minor biotite and muscovite, rare small carbonate clasts (?), and fine calcareous cements.  

Thinly interbedded shaly siltstone and shale contain abundant silt-sized quartz grains with 

calcareous cement, small shell (brachiopod) fragments and sparse glauconite (green) fragments 

(Fig. 3. 44).  Clay-sized material occurs along stylolites (Fig. 3.44).  Slightly calcareous, silty shales 

have a clay-shale matrix with small, silt-sized quartz grains, dispersed elongate opaque (black) 

grains (which may be biotite, pyrite or organic matter) and brachiopod shell fragments (Fig. 

3.45).   

ODNR DGS 2627 American Aggregates Well 

 The ODNR DGS 2627 American Aggregates well is located in Warren County, Ohio (Fig. 

3.46).  The entire study interval (610 ft) was cored in this well (Fig. 3.46).  The core is significantly 

longer than the previous cores, and contains a more diverse suite of lithologies.  Units 1 and 2 of 

this study are dominated by dolomite and limestone.  Silty shales also occur Unit 2. Part of the 

shaly interval in Unit 2 (Fig. 3.28) was not recovered.  Siltstone and shales in the middle part of 

the interval are part of Unit 3. Unit 4 includes a sandstone and similar lithologies as Unit 3.  Unit 

5 includes the lower part of the interbedded siltstones and shales.  Units 6 and 7 are sandstone 

in this well.  The lower sandstone is gradational with the underlying Mount Simon Sandstone.  

Each of the units is summarized in the following pages.    



Fi
b
m

 

Fi
in
fr
10

igure 3.43. Ph
rown.  Note v

may represent

igure 3.44. Ph
n Unit 1.  Note
ragments, and
00X magnifica

hotomicrogra
vertically align
t a burrow.  1

hotomicrogra
e shell fragme
d dark brown
ation with cro

ph of silty sh
ned biotites a

100x magnific

ph of thinly i
ents (elongat
 to black clay
oss polars. 

74 
 

ale from 2839
and finer mat
ation with cro

nterbedded s
e with vertica

y-sized materi

9 ft deep from
trix in center 
oss polars. 

shaly siltstone
al ribbing) spa
ial along stylo

 

m Unit 1.  Bio
of the photom

 

e and shale fr
arse glauconi
olite at top m

otites are dark
micrograph, w

rom 2837 ft d
ite (green) 

middle of view

k 
which 

deep 

w. 



Fi
sh
b

 

U

co

co

w

d

d

w

fi

is

an

igure 3.45. Ph
hell fragment
iotite.  100x m

Unit 1 

Unit 1 

ore (Fig. 3.47

onsists of (a) 

with silty shale

olomite with 

olomite with 

with shale.  Do

nely laminate

s noted, along

nd shale rip- 

hotomicrogra
t visible in left
magnification

in log correla

); an interval 

interbedded 

e bands, (b) d

shale lamina

shale lamina

olomites are v

ed Bedding is 

g with silty, w

up clasts occu

ph of calcare
t, upper midd

n without cros

ations (Fig. 3.

of 41.5 ft thic

carbonates a

olomite with

tions, (e) nod

tions, (g) flat-

variably silty, 

horizontal, w

wispy, very thi

ur above shar

75 
 

eous shaly silt
dle of view.  B
ss polars. 

28) correspon

ck.  This is the

and shale (Fig

 silty shale ba

dular dolomit

-pebble cong

sandy, crysta

wavy, and slig

n shale lamin

rp contacts b

tstone from 2
Brown to blac

nds to depths

e Maynardsvi

. 3.47), includ

ands, (c) coar

e interbedde

glomerates, a

alline, and oo

ghtly convolut

nations.  Spar

etween carbo

 

2846 ft deep i
ck elongate fr

s of 2637.5 to

ille Limestone

ding coarse cr

rse crystalline

ed with shale,

nd (h) limesto

olitic.  Many d

ted.  Sparse v

se, small foss

onates and u

n Unit 1.  Lar
ragments are 

o 2679.0 ft in 

e interval.  It 

rystalline dolo

e dolomite, (d

 (f) sandy 

one interbedd

dolomites are 

vertical burrow

sil shell fragm

nderlying sha

ge 

the 

omite 

d) 

ded 

wing 

ments 

ales.   



Fi
w
sa
M

igure 3.46.  M
well.  Top of co
andstone, MG

M=mudsstone

Measured sect
ore in right-h
GSS=medium-
e, W=wackest

tion of cored 
and column. 
-grained sand

tone, P=packs

76 
 

interval of Co
Depth in feet

dstone, CSGSS
stone, G=grai

onasauga  Gr
t. SH=shale, S
S=coarse-gra
nstone, B=bo

roup in the W
ST=siltstone, F
ined sandsto

oundstone.  

Warren County
FGSS=fine-gra
ne, 

 

y 
ained 



77 
 

 
 

Figure 3.47.  Unit 1 dolomites and interbedded shaly dolomites and shales in the Warren County 
well at depths of 2670 to 2680 ft deep.  Top is upper left in photograph. 

 

 

Some dolomites exhibited a clotted texture, signifying possible thrombolites (as in the Davis 

Limestone in the DuPont well), or possibly stromatolites.   

Flat-pebble conglomerates occur at several horizons, from 2653.52-2654.47, 2657.82-

2658.25, 2662.1-2662.45, 2667.75-2668.1, and 2679.22 to 2679.47 ft.  Clasts in the 

conglomerates are grey to dark grey and composed of fine-grained limestone or laminated 

dolomite (Fig. 3.48-3.49). One of the conglomerates occurred with small black, fossil shell 

fragments.  A flat-pebble conglomerate at 2668.5-2668.88 was mixed with oolitic limestone. 
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Figure 3.48. Sharp-based flat-pebble conglomerate above laminated dolomitic limestone, 
interbedded with laminated dolomitic limestone and shale at 2654 ft depth.  Wet and dry core 
halves are shown.  Ruler scale in cm. 

 

Figure 3.49. Sharp-based flat-pebble conglomerate at 2658 ft depth.  Core is wet to show 
contrast.  Note laminated dolomite clasts and white calcareous cement infilling voids between 
pebbles.  Ruler scale in cm. 
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Unit 2 

Unit 2 is approximately 92 feet thick in log correlations (Fig. 3.28), corresponding to the 

interval from 2679 ft to 2771 ft in the core (Fig. 3.46). Unit 2 consists primarily of limestone 

interbedded with shale (Fig. 3.50), siltstone interbedded with shale (Fig. 3.51), and calcareous 

siltstone with shale laminations.  Unit 2 is partly equivalent to the Nolichucky Formation. Some 

of the more shale rich parts of the Nolichucky may be part of the missing section in this core.  

Unit 2 here contains a limestone- rich interval that is transitional with the overlying dolomitic 

carbonates in Unit 1.  Some workers might pick the top of the Nolichucky Formation at the base 

of the limestone. 

 Limestones in the upper part of Unit 2 are typically dark grey to light grey in color, and 

were variably oolitic, with high concentrations of black ooids exhibited in clusters, especially at 

the top of the unit. Some black oolitic limestones were associated with flat-pebble 

conglomerates (Fig. 3.50).  Abundant fossil shell fragments were noted above sharp bedding 

contacts (likely lags).  Bedding was often churned.   Interbedded shales are grey, variably silty, 

and often very fissile (Fig. 3.51).  

One thin dolomitic zone, about 1.5 feet thick, was interbedded with the limestones in 

Unit 2.  Dolomite was light grey to grey in color, with sparse, very thin shale laminations.  A zone 

of oolitic limestone was sandwiched between the two dolomitic beds.  One thin, brown, iron 

rich band was noted at the top of the second dolomitic zone.   

In the lower part of Unit 2, siltstones interbedded with shale were light to dark grey, to 

light tan in color (Fig. 3.51).  Siltstones were slightly calcareous, and some horizontal burrowing 

was observed.  Shales within the siltstones were often grey, thinly bedded, fissile, and variably  
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Figure 3.50. Interbedded limestone and shale core at the top of Unit 2 in the Warren County 
well at depths of 2680 to 2690 ft.  Top is upper left in photograph.  Core shown wet for bedding 
contrast. 
 
 
 

 

Figure 3.51.  Example of interbedded shale (dark) and siltstone (light) from lower in Unit 2, at 
depths of 2740 to 2750 ft.  Top is upper left in photograph.  Core shown wet to enhance bedding 
contrast.  
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Figure 3.52. Flat pebble conglomerates (orange) in a matrix of black oolitic limestone at depth of 
2695 ft.  Top is to the right. Scale in cm. 

 

silty.  Sparse fossil shell fragments were noted, as were small silty pebbles in a shaly matrix 

above some sharp bedding contacts (Fig. 3.51). 

Unit 3 

Unit 3 was approximately 80 ft thick in log correlations (Fig. 3.28), which corresponds to 

depths of 2771 ft to 2851 ft in the core (Fig. 3.46).  The uppermost part of the unit is missing in 

the core.  Unit 3 consists entirely of calcareous siltstone with shale laminations.  Siltstones were 

medium grey, to grey, to light tan, to brown in color, and slightly calcareous.  Siltstones were 

interbedded with abundant, thin, medium to dark grey shales.  Most contacts are sharp. 

Siltstones are horizontally bedded, wavy to undulatory, or contorted (Fig. 3.53).  Sparse thin 

zones of silty, flat-pebble conglomerates in a silty, muddy matrix were common throughout the 

unit.  One of these, at a depth of 2783 ft, consisted of pebbles more than 6 cm in length (Fig. 

3.54).  
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Figure 3.53.  Example of interbedded sitlstones and shales in Unit 3 in the Warren County well 
from 2800 to 2810 ft. Top is upper left in photograph.  Core shown wet to enhance bedding. 

 

Figure 3.54. Flat-pebble conglomerate comprised of large clasts, with red to pink iron (?) 
staining at 2783 ft. Top is to the left.  Ruler scale in cm.  

 

Shales and silty shales are common in Unit 3. Shalier intervals are fissile. Many shales, especially 

near the bottom of the unit, were contorted or exhibited churned bedding.  

Unit 4 

Unit 4 was approximately 150 feet thick in log correlations (Fig. 3.28), which 

corresponds to depths of 2851 ft to 3001 ft in the core (Fig. 3.46).  The top of a sandstone bed 
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(Fig. 3.55) at 2860 ft might correspond better to the top of the coarsening-upward signature 

picked for the top of Unit 4 in the logs for this well (Fig. 3.28).  Similarly, the shale break at 3008 

ft depth (Fig. 3.46) corresponds better to the geophysical log break used to pick the base of Unit 

4 on logs (Fig. 3.28).  

Unit 4 consists of siltstones with shale laminations, siltstones, and the sandstone at the 

top of the unit.  The sandstone from 2861 to 2870 ft is a fine- to medium-grained, quartzose, 

and laminated to irregularly bedded.  The rest of the unit is dominated by interbedded siltstone 

and shale (Fig. 3.55), similar to, but overall siltier than in Unit 3.  Siltstones exhibit laminations, 

horizontal bedding, and undulatory bedding.  Many are contorted and deformed (Fig. 3.55). 

Some siltstones have a pinkish color, likely from iron staining. Abundant, thin, wispy shale 

laminations were interspersed throughout thicker siltstones in the unit.  Shales, where thick 

enough, were fissile.  Sparse, vertical burrowing through shale laminations was observed 

between 2,900 ft and 2,910 ft deep.  Some siltstones were slightly dolomitized and displayed 

sparse, very small vugs, especially between 2,900 ft and 2,920 ft deep (Fig. 3.46). 

Unit 5 

Unit 5 was approximately 91 ft thick in log correlations (Fig. 3.28), which corresponds to 

depths from 3001 ft to 3092 ft in the core (Fig. 3.46).  Unit 5 consisted of siltstones and shales.  

Variations of siltstone and shale, as in overlying units, including siltstone with shale laminations, 

silty shale, siltstone, and siltstone with shale laminations (Fig. 3.57).  As in Unit 4 (Fig. 3.56) some 

of the siltstones are pink in color, suggesting iron staining. Some horizontal burrowing was 

observed at shale/siltstone contacts.  Clean shales were very fissile.  Bedding is commonly 

churned and contorted.  Isolated vugs were present in dolomitic zones of some siltstone beds  
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Figure 3.55.  Interbedded sandstone, siltstone and shale at the top of Unit 4, in the Warren 
County well from depths of 2860 to 2870 ft.  Top is upper left in photograph.  Each core row is 
two ft long.   
 

 

 

Figure 3.56.  Interbedded siltstone and shale in Unit 4, in the Warren County well from depths of 
2870 to 2880 ft.  Top is upper left in photo.  Scale in cm.  Core shown wet to enhance bedding. 
Note pink color in some siltstones. 
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Figure 3.57.  Interbedded siltstones and shales in Unit 5 from 3030 to 3040 ft.  Top is upper left 
in photo.  Scale in cm. Core shown wet to enhance bedding.  Note pink color in some siltstones. 
 
 
 

 
 
Figure 3.58.  Small, isolated vug in gray contorted, partially dolomitic, siltstone at depth of 
3079.5 ft.  Scale bar is 1 cm.  Top is upper left in photo.  
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Figure 3.59.  Sandstone and interbedded shale in Unit 6 from 3130 to 3140 ft.  Top is upper left 
in photo.  Scale in cm. Core shown wet to enhance bedding contrast.  Note pink color in some 
sandstones. 
 

 

Figure 3.60.  Contorted bedding and deformed vertical burrow at 3122 ft in Unit 6.  Top is upper 
left in photo.  Scale bar is 1 cm.  Core shown wet to enhance bedding contrast.   

 

Figure 3.61.  Interlaminated sandstones and shales with abundant burrowing in Unit 6 at 3140 ft  
Top is upper left in photo.  Scale bar= 1 cm.  Core shown wet to enhance bedding contrast.   
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Unit 6 

Unit 6 was approximately 100 ft thick in log correlations (Fig. 3.28), which corresponds 

to depths from 3092 ft to 3192 ft in the core (Fig. 3.46).  In the Warren County well, Unit 6 

consists of sandstone, sandstone with shale laminations, and interbedded sandstone and shales.   

Sandstones were grey to light tan, and pink, medium to coarse grained, thinly bedded to 

laminated (Fig. 3.59).  Some sandstones contained abundant black grains, interpreted to be 

glauconite.  Sandstones are commonly bioturbated (Figs. 3.59-3.61).  Bioturbation is more 

distinct where beds are interlaminated with shale. 

Unit 7 

Unit 7 was approximately 40 ft thick in log correlations (Fig. 3.28), which corresponds to 

depths from 3192 ft to 3232 ft in the core (Fig. 3.46). In this well, Units 6 and 7 are gradational. 

Unit 7 appears shaly in some wells on downhole geophysical logs, but is dominated by 

sandstone in the Warren County well (Fig. 3.46).  This is a very good example of the variability of 

the lithologies both vertically and laterally within the Eau Claire/Conasauga interval across the 

study area.  Sandstones in this unit are pink, tan and light to medium grey, and fine to medium 

grained.  Sandstones are laminated to crossbedded (Fig. 3.62).  Several intervals have less shale 

interlaminations than the overlying unit.  Many small vugs and pores were noted in one massive 

(structure-less) section, approximately 1.5 ft thick.  
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Figure 3.62.  Pink sandstone with thin shale laminations in Unit 7 from 3200 to 3210 in 
the Warren County well. This unit is transitional with the underlying Mount Simon 
Sandstone.  Top is upper left in photo.  Scale in cm.  Core shown wet to enhance bedding 
contrast. 
 

Contorted and churned bedding is common, similar to Unit 6.  In some cases, this is possibly 

from bioturbation, but it is generally less distinct than the burrows in the interlaminated shales 

and sandstones of Unit 6. 

 The base of the sandstone appears gradational with what appears to be the Mount 

Simon Sandstone on geophysical logs.  Some previous workers have picked the top of the Mount 

Simon as the base of the Maryville Limestone equivalent, which would be the base of Unit 6 in 

this study.   

 

USS CHEM./US STEEL No. 1 USS CHEMICALS Well 

The USS Chem. /US Steel No. 1 USS Chemicals well is located in Scioto County, Ohio (Fig. 

3.28).  This well was originally drilled by Aristech Corporation.  This well was cored through most 

of the study interval from the top of the Conasauga Group, down into the upper part of Unit 4.  

Conasauga Group nomenclature is used in this well.  Approximately 406 feet of core was 
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described and photographed; from 4984.1 ft to 5390.9 ft deep.  The core was previously 

described by Mark Baranoski (2001) of the Ohio Geological Survey, and Baranoski’s descriptions 

were used for comparison in this study.  

Base of Knox Group  

The lower part of the Knox Group was examined to compare with the Davis Limestone 

in the DuPont well and underlying Conasauga Group dolomites in this well.  The lower 66 ft of 

the Knox Dolomite (equals the Copper Ridge Formation of the Knox Group in Kentucky) was 

examined, from 4984 to 5044 ft.  Core consisted of medium grey dolomite with sparse shale 

interbeds and styolites throughout.  Dolomites were commonly crystalline.  Where original 

textures were preserved, some dolomite exhibited a clotted texture, possibly thrombolitic.  

Zones of ooids were also observed.  Clotted texture and ooids were also observed at a similar 

stratigraphic level in the ODNR (Warren County) and DuPont No. 1 WAD fee wells.   

Unit 1 

 Unit 1 was approximately 46 ft thick in log correlations (Fig. 3.28), corresponding to the 

interval from 5044 ft to 5090 ft in the core (Fig. 3.64). The unit is approximately equivalent to 

the Maynardsville Limestone.  Baranoski (2011) picked the top of the Maynardsville slightly 

higher than the correlation of Unit 1 used in the present work, (at 5024 ft, at the top of a 

nodular dolomite in the core).  Unit 1 dolomites are gray to tan, nodular to laminated, with 

abundant thin shale bands.  Interlaminated shales are dark grey, fissile, and dolomitic.  Shales 

contain abundant fossil graptolites (Fig. 3.65), lingulid brachiopod fragments (Fig. 3.66), and 

trilobite fragments (Fig. 3.67).  Siltstones were grey with interbedded to interlaminated shale.  
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Figure 3.65. Graptolite fragments in lower part of Unit 1 shale at 5062.50 ft deep. 

Figure 3.64.  Interbedded laminated to nodular dolomites and shales in Unit 1 from 5048.3 
to approximately 5058 ft.  Top is upper right in this photograph.  Core in middle of the box 
wet to enhance bedding contrast.  
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Unit 2 

Unit 2 is approximately 82 feet thick on logs (Fig. 3.28) and corresponds to depths of 

5090 to 5172 ft in the core (Fig. 3.63).  Unit 2 is approximately the top of a very shaly gamma 

response in the log for this well. Baranoski (2001) picked the base of the Maynardsville 

Formation/top of the Nolichucky Formation higher at the base of a thick carbonate bed, at   

Figure 3.66.  Intact lingulid brachiopod shell in lower part of Unit 1 shale at 5064.8 ft deep.    

Figure 3.67.  Trilobite cephalon fragment in lower part of Unit 1 shale at 5071.20 ft deep
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5064 ft.  The interval between 5090 and 5064 is gradational between overlying carbonates and 

underlying shales.  Unit 2 consists of shale and dolomite (Fig. 3.68).  Shales are light grey to dark 

gray, and interbedded with dolomite.  Dolomites were grey, often crystalline, and thick.  

Dolomites that were not crystalline, were often silty, and commonly exhibited zones of small, 

black grains interpreted to be glauconite.  Shales contained fossil trilobites, brachiopods, and 

graptolites (Fig. 3.69). 

Unit 3 

Unit 3 is approximately 46 ft thick in logs (Fig. 3.28), and corresponds to depths of 5172 to 5218 

ft in the core (Fig. 3.63).  The top of Unit 3 on logs was picked at the uppermost apparent thick 

dolomite in an overall fining-upward interval from the underlying thick carbonates of the 

Maryville Limestone into the overlying shales of the Nolichucky Formation. Unit 3 consists of 

interbedded dolomite, sandy dolomite, shale, and siltstone. Dolomites were similar to the 

overlying unit, but overall in thicker beds.  At least one bed was sandy; some others were 

crystalline, with abundant small vugs.  

Unit 4 

The top of Unit 4 on logs (Fig. 3.29) corresponds to a depth of 5218 ft in the core (Fig. 

3.63).  The log pick was made at the top of sharp gamma excursion and a change from blocky 

(consistent) dolomite density below, to more variable above.  Baranoski (2001) picked the 

official top of the Maryville Limestone higher at 5194 ft, at the contact between a shale and top 

of a thick dolomite.  The interval between 5194 and 5218 is mostly gradational. Approximately 

166 ft of Unit 4 (below 5218 ft) was available for observation. It is dominated by light grey to 

white, laminated to massive dolomite.  Some beds are brecciated or churned, others are 
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Figure 3.68. Unit 2 shales from 5133 to 5142 ft deep.  Top is upper right.  Each core row is 2 feet 
in length.  Paper slips mark position of fossils in the core.  

 

 

Figure 3.69. Fossil trilobite fragments in shale from core box shown in Fig. 3.68. 
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crystalline, and a few are sandy.  Sharp to irregular scour surfaces are common.  Small styolites 

and vugs occur locally. Vugs were mostly filled with saddle dolomite and gypsum or anhydrite 

(Fig. 3.70).  Irregular anhydrite beds or nodules occur at approximately 5347, 5376, and near the 

base of the core at 5383.5 ft (Fig. 3.71).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.71.  Irregular anhydrite bed (white and light blue) in Unit 4 dolomite at 5383.5 ft . 
Top of core to right. 

Figure 3.70.  Vuggy porosity in Unit 4 dolomite at 5235.00 ft deep.  Top of core is to right.
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well, so cuttings were used to check average rock types in other intervals.  A summary of the 

cuttings analyses is shown in Figure 3.74.  

 

Figure 3.74. Summary of rock types in cuttings in the Battelle No. 1 Duke Energy (East Bend) well 
by unit. 

 

Cuttings were examined at 2,800 to 2,810 ft, 2,850 to 2,860 ft, and 2,900 to 2,910 ft in 

Unit 3 (Fig. 3.74). All samples were dominated by micaceous shale.  Two of the samples 

contained had 20 to 40% dolomite or dolomitic siltstone grains.  The middle sample had more 

silt grains than dolomite and also had a minor amount (1-3%) of angular quartz grains.   

Cuttings were examined from 2,950-2,960 ft, 2,970 to 2,980 ft, and 2990 to 3000 ft deep 

in Unit 4 (Fig. 3.74). In general, the percentage of shale increases upwards within the unit, while 

the percentage of crystalline dolomite chips decreases.  The sample from 2,970 to 2,980 ft 
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contained chips of calcite (2%) and rounded quartz grains (2%).  Calcite (8%) chips were also 

noted in the lower sample. 

Two sample depths were examined for Unit 5 in the East Bend well, from 3,050 to 3,060 

ft and 3,100 to 3,110 ft (Fig. 3.74).  These samples were similar to shale-dominant samples in 

Units 3 and Unit 4.  

One sample of cuttings was examined in both Unit 6 and 7 to see if any sandstone was 

present and to check the lithology of the immediate caprock above the Mount Simon 

Sandstone. Unit 6 was sampled from 3,140 to 3,150 ft deep (Fig. 3.74).  The sample was 

composed of 60% crystalline dolomite, and no sandstones. The Unit 7 sample from 3,200 to 

3,210 feet deep (Figs. 3.64-3.65) was almost all silty shale (90%). The remainder contained 7 to 

9% silty chunks, and 1 to 3% rounded quartz grains.   

Ashland No. 1 Wilson Well 

Cuttings were observed in the Ashland No. 1 Wilson well (Fig. 3.73) in Unit 4, Unit 5, 

Unit 6, and Unit 7 (Fig. 3.75). A summary of the cuttings analyses is shown in Figure 3.75.  Most 

of the cuttings were nearly 50% shale.  More shale was observed in Unit 5 than the other units 

in the well. Siltstones were calcareous. Rounded quartz sand grains were in every sample.  In 

Units 4 and 5 they were rare (1%), but Unit 6 had 10% sand grains and Unit 7 had 50% sand 

grains. Sandstone chips in Unit 7 were quartzose and fine-grained.  Muscovite and biotite were 

noted in some of the sandstone chips.   

Monitor Petroleum No. 1 Stacy Heirs Well  

Cuttings in the Monitor Petroleum well (Fig. 3.72) were examined for Unit 3 and Unit 4 

(Fig. 3.73).  A summary of the cuttings analyses is shown in Figure 3.76.  Two samples of cuttings 
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were observed for Unit 3.  The first sample was from 5,560 to 5,570 feet deep.  The second 

sample (from Unit 3A) was from 5,700 to 5,710 ft deep.  Both contained abundant shale, but the 

lower sample contained significant limestone. Cuttings for Unit 4 were observed from 5,800 to  

 

Figure 3.75. Summary of rock types in cuttings in the Ashland No. 1 Wilson well by unit. 

 

 

Figure 3.76.  Summary of rock types in cuttings in the Monitor Petroleum No. 1 Stacey Heirs well 
by unit. 
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5,810 feet deep.  The sample was dominated (48%) by calcite chips, possibly from a limestone.  

Clear quartz grains comprised 12% of the sample.   

Thomas No. 1 Adams Well 

Cuttings were examined in the Thomas No. 1 Adams well within Unit 6 (Figs. 3.72-3.73).  

The purpose for focusing on Unit 6, was to identify possible sandy zones suggested in 

geophysical log signatures.  A summary of the cuttings analyses is shown in Figure 3.77.  Two 

samples from 4,015 to 4,020 ft (Unit 6A) and 4,050 to 4,055 ft (upper Unit 6B), contained nearly 

50% sand grains.  Most of the grains were clear, frosted quartz sand, but some sand grains were 

arkosic and pink in color.  Sandstones were only minor constituents (1%) of the lower two 

samples from 4,085 to 4,090 ft, and 4,095 to 4,100 ft.  

 

 Figure 3.77.  Summary of rock types in cuttings in the Thomas No. 1 Adams well by unit. 
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Ashland Oil and Refining No. 1 Stapleton Well 

Cuttings were examined in the Ashland No. 1 Stapleton well (Fig. 3.72) for Unit 5 and 

Unit 6 (Fig. 3.73).  A summary of the cuttings analysis is shown in Figure 3.78. The sample 

examined for Unit 5 was from 5,090 to 5,100 ft.  Shale made up 10%, quartz sand grains were 

3%, and light grey dolomite constituted the remaining 87% of the sample.  Cuttings examined 

for Unit 6 were from 5,140 to 5,150 ft deep.  Carbonates in Unit 6 appeared to be dominated by 

light gray limestone rather than dolomite. 

 

Figure 3.78.  Summary of rock types in cuttings in the Ashland No. 11-1 Stapleton well by unit. 

 

UGD 9061 T Rawlings Well 

Cuttings in the UGD 9061 T Rawlings well (Fig. 3.72) were observed for Unit 3, Unit 4, 

Unit 5, Unit 6, Unit 7 (Fig. 3.73).  A summary of the cuttings analyses is shown in Figure 3.79.  

Cuttings for Unit 3 were from 2,850 to 2,860 ft deep, and cuttings examined from Unit 3A were 

from 2,900 to 2,910 ft deep.  Both were composed almost equally of dolomite and shale.  Minor 

sand (2%) was noted in Unit 3. 
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Figure 3.79.  Summary of rock types in cuttings in the UGD 9061 T Rawlings well by unit. 

 

Cuttings for Unit 4 were sampled from 3,050 to 3,060 feet, and were the most shaly of 

any examined from this well.  Shale comprised 90% of the sample, while mixed fine grained sand 

and silt chips made up the remaining 10%.  Cuttings for Unit 5, from 3,120 to 3,130 feet deep, 

and Unit 6, from 3,160 to 3,170 ft were both dominated by sandstone.  

The first sample for Unit 6 was from 3,160 to 3,170 feet deep, and consisted of 80% light 

and 20% dark material.  Dark, sandy shale with many flat, rounded chips made up 20% of the 

sample, while the remaining 80% of the sample was composed of fine grained, slightly peppered 

sandstone chunks.  Two small, clear quartz sand grains were also observed.   The second sample 

for Unit 6 crossed the boundary between the base of Unit 6, and into the top of Unit 7.  The 

sample examined was from 3,240 to 3,250 ft deep and consisted of 70% slightly pink, fine-

grained sandstone chips.  Dolomite made up the remaining 6% of the sample.   
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and the permeability value in milidarcys (md) for each sample.  These values are discussed in the 

discussion section of this thesis. 

Geochemistry 

Total Organic Carbon 

 Six shale samples were analyzed from two wells for total organic carbon (TOC) analysis.  

Samples were analyzed to determine if the shales had enough carbon to have the possibility for 

adsorption of CO2.  The darkest shales within available core from the DuPont No. 1 WAD fee well 

and Battelle No. 1 Duke Energy well were chosen for analyses, since these would likely have the 

highest organic carbon contents.  Results indicated very low TOC; below one percent in all six 

samples (Table 3.8).  As such, these shales will likely not have adsorptive characteristics relative 

to CO2. 

X-Ray Fluorescence 

 Data was collected with the hand-held XRF device from several cores and cuttings.  This 

was an experimental methodology to see if resulting data might provide an aid in stratigraphic 

correlations.  Figure 3.82 shows the location of wells in which XRF data was collected. In order to 

determine if results from the hand-held instrument were valid, a comparison was made with 

whole-rock geochemical data previously collected by Neufelder (2011) using a lithium 

metaborate/tetraborate fusion inductively coupled plasma (ICP [mass spectrometer]), from the 

same cores.  Figure 3.83 shows the results of the comparison for several major oxides.  The 

results showed similar trends of relative abundance in each case, although absolute values were 

not the same. 
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Table 3.7.  Depths and measured permeabilities for samples from the study interval.  Numbers 
in the number column correspond with the sample numbers in the cross section Figure 3.72. 
Numbers in the unit column correspond to the study units defined in the present study. 
*Fractured or chipped sample.  **Sample unsuitable for permeability measurement.  DuPont 
well data from KGS online database.  Battelle No. 1 Duke Energy well data from Battelle (2012).  
U.S. Chem/U.S. Steel No.1 well data from Baranoski (2001).     

 

Permeability 

Number 
Top Depth 

(ft) 

Unit within 
Study 

Interval Well Type 
Value 
(md) 

1 
4409.0-
4443.1 

Knox 
(above Unit 

1) DuPont No. 1 WAD fee vertical <0.1 

2 2844.9 3 
Battelle No. 1 Duke 

Energy 
rotary 
sidewall 11.8**

3 3190 6 
Battelle No. 1 Duke 

Energy 
rotary 
sidewall 0.007

4 3205 7 
Battelle No. 1 Duke 

Energy 
rotary 
sidewall 0.003

5 2834.9 3 
Battelle No. 1 Duke 

Energy 
rotary 
sidewall 0.602*

6 2854.35 3 
Battelle No. 1 Duke 

Energy 
rotary 
sidewall 0.0004

7 2895 4 
Battelle No. 1 Duke 

Energy 
rotary 
sidewall 0.011*

8 3062 4 
Battelle No. 1 Duke 

Energy 
rotary 
sidewall 0.001*

9 
5563.0-
5573.0 7 U.S. Chem/U.S. Steel 1 vertical 0.4

10 
5532.0-
5561.0 7 U.S. Chem/U.S. Steel 1 vertical 26.8
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Figure 3.87.  Handheld XRF results summarized by unit for the wells sampled.  Y axis is weight 
percent CaO.   

 

Figure 3.88.  Handheld XRF results summarized by unit for the wells sampled.  Y axis is weight 
percent K2O.   

 

 

Figure 3.89.  Handheld XRF results summarized by unit for the wells sampled.  Y axis is weight 
percent Fe2O3.   
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Figure 3.90.  Handheld XRF results with concentrations of CaO, K2O, and Fe2O3 within Unit 2 for 
each well.  X axis in weight percent.   

 

Figure 3.91.  Handheld XRF results with concentrations of CaO, K2O, and Fe2O3 within Unit 4 for 
each well.  X axis in weight percent.   

 

Figure 3.92.  Handheld XRF results with concentrations of CaO, K2O, and Fe2O3 within Unit 7 for 
each well.  X axis in weight percent.   
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across the study area.  Concentrations of CaO were highest in the Battelle No. 1 Duke Energy 

(East Bend) and Ashland No. 1 Wilson wells in central and western Kentucky, while K2O and 

Fe2O3 did not change greatly (although were slightly higher in the lower units).  Figure 3.92 

shows lateral variation in concentration for Unit 7.  Concentrations of CaO increase eastward, 

which is expected as carbonates tend to increase eastward throughout the interval. 

Concentrations of Fe2O3 show an inverse relationship and are greatest in the west and smallest 

in the east. Iron concentrations are also slightly higher (5%) in Unit 7 than in Units 2 and 4. 

Concentrations of K2O did not vary across the study area much, nor did they show any distinct 

vertical or lateral trends. 

Overall, the hand-held XRF data shows major element and oxide variation within the 

study interval (both stratigraphically and geographically).  Results may help to guide future 

modeling work or sampling for specific minerals of interest to CO2 storage projects. 
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CHAPTER 4: DISCUSSION AND CONCLUSION 

Depositional Model for the Eau Claire/Conasauga interval  

 The Conasauga Group was deposited as part of a thick, Cambro-Ordovician passive 

margin sequence (Srinivasan and Walker, 1993).  Rodgers (1953) identified three distinct phases 

in Conasauga deposition. The first was a succession predominantly characterized by carbonate 

lithofacies deposited to the east and southeastern sections of what was then the eastern edge 

of the North American continent.  The second phase was a western and northwestern 

deposition of shales.  The third phase was a succession in central areas between the carbonates 

and shales where the shales and carbonates interbedded with each other (Rogers, 1953).  The 

Conasauga Group was deposited in a regional intrashelf depocenter.  This depocenter consisted 

of an intracratonic basin (shales) and a carbonate platform.  Markello and Read (1981, 1982) 

and Glumac and Walker (2000) interpreted Conasauga carbonates as carbonate platform 

deposits, which graded downdip into deeper-water carbonates, and Conasauga shales in Virginia 

and Tennessee. 

 Correlations and the subsequent cross sections created for this research support 

previous   depositional models by Markello and Read (1981, 1982) and Glumac and Walker 

(2000), but in a lower accommodation setting north of the Rome Trough.  Also, in the study 

area, the Conasauga carbonates in the east grade downdip into Eau Claire shales.  Most of the 

unit subdivisions used in this report are coarsening-upward (or grading upward from shales into 

carbonates) in some part of the study area. In Tennessee and Virginia, intervals in the 

Nolichucky Formation that coarsen upward were interpreted to be shallowing-upward cycles 

(Markello and Read, 1982; Glumac and Walker, 2000).  In this study interval, the upper part of 

Units 2, 3, 3A, 4, 4A, 5, 6, 6A, and 7 are coarsening-upward across part of the area (e.g. Figs. 3.4, 
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3.8, 3.9). This suggests multiple shallowing-upward cycles and carbonate progradations, likely 

controlled by changes in sea level.  Where carbonates interfinger with shales and silts in central 

portions of the study area, the coarsening-upward intervals are sharply capped by shales, which 

may indicate marine flooding surfaces.  In times when sea level was lower, Conasauga 

carbonates migrated further west.  When sea level was higher, Eau Claire shales migrated 

further east.  

Sandstones are more prevalent within the lower sections of the study interval than 

previously noted.  These sandstones could have been contributed from the Kerbel “delta” or 

Kerbel source area in north Ohio (Janssens, 1973).  Sandstones noted in Units 3 through 7 are in 

the interval included in the proposed Sandusky Formation to the north in Ohio (Baranoski, 

2007). Sandstone core in Unit 7 was examined in the ODNR 2627 American Aggregates well, 

Warren County, Ohio, and is composed of churned and bioturbated sandstone (Figs. 3.28 and 

3.46), which was likely deposited as marine sands Unit 6 and 7 sands contain relatively high 

concentrations of phosphorous, likely phosphates, which are also marine indicators (Fig. 3.86). 

Sandstones in Unit 6 cores also contained glauconite, which is also a marine indicator (Boggs, 

2001; Bharat, 2011). 

Units 4 and 5 are similar carbonate lithologies.  They make up the upper and lower 

portions of the Maryville Limestone in the east.  The Maryville limestone thickens greatly over 

the Rome Trough eastward (Figs. 3.7 and 3.9) indicating substantial movement along faults 

within the Trough during deposition.  Units 4 and 5 have two to three tongues of carbonate 

extending westward into the Eau Claire shales and siltstones, (Figs. 3.4, 3.5, and 3.6) to the 

Grenville Front.  This indicates a possible depositional influence by the Grenville Front.  Markello 

and Read (1982) interpreted Conasauga carbonates as gradually dipping down a ramp into 
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deeper water shales and siltstones.  Cross sections for this report in Units 3, 4, and 5, (Maryville 

Limestone) appear to  be able to be correlated for relatively long distances (Figs. 3.4, 3.5, and 

3.6). Therefore, these units most likely represent shallow dipping ramp deposits.  Glauconite is 

present in core, supporting marine deposition.  Dolomites within Unit 4 of the Aristech well 

showed clotted thrombolytic texture, as well as abundant fossil shell and trilobite fragments, 

indicative of shallow marine deposition.   

The top of Unit 3 is the top of the Maryville Limestone in extreme eastern sections of 

the study area.  Unit 3 in core from the Battelle No. 1 Duke Energy well and the ODNR DGS 2627 

wells consisted of mixed clastics and carbonates, with fossil brachiopod shells and trilobite 

fragments (Fig. 3.42), and flat-pebble conglomerates.  Unit 3 in the U.S. Chem/U.S. Steel No. 1 

well core, to the east, contained some sandstone.  Sandstones were churned, from bioturbation 

or higher energy deposition.  Unit 3 thickens into the Rome Trough (Fig. 3.7 and 3.9) showing 

continual movement of the faults within the trough during deposition, but does not show 

significant thickness (e.g. Fig. 3.24), structural (Fig. 3.15), or lithologic (e.g., Fig. 3.5) change 

across the Grenville Front.  

Unit 2 is continuous across the entire study area, except in extreme eastern sections of 

the study area where it pinches out into Conasauga carbonates.  Unit 2 is the main part of the 

Nolichucky Shale.  The Nolichucky has previously been interpreted as deeper water shales 

(Markello and Read, 1982; Glumac and Walker, 2000), which suggests flooding of the underlying 

Conasauga ramp and platform.  Unit 2 in core from the Warren County well (Fig. 3.46) and the 

USS Chem/U.S. Steel No. 1well (Fig 3.69) contained abundant trilobite fragments, brachiopods, 

and graptolites, supporting marine deposition and possibly deeper than underlying carbonates.  



119 
 

Unit 2 also thickens into the Rome Trough but less so than Unit 3, indicating decreased 

subsidence in the trough.  

Unit 1 is the Maynardsville Limestone and marks a return to carbonate deposition 

across much of the study area.  This limestone has previously been interpreted as a peritidal 

carbonate platform to carbonate ramp deposit (Markello and Read, 1982; Glumac and Walker, 

2000). In this study, dolomites within core examined for Unit 1 or in the upper part of Unit 2 

where it was transitional with Unit 1 exhibited a variety of features including thin cryptalgal 

laminated and nodular dolomite, flat-pebble conglomerates  (eg. Fig. 3.49), oolitic limestone, 

and thrombolites, which all occur in shallow marine environments.  Feldmann and McKenzie 

(1986) noted that modern thrombolites can be found in the Bahamas, in subtidal environments.  

Glumac and Walker (2000) placed thrombolites in agitated, shallow, subtidal ramp to platform 

margins and patch reefs.  Unit 1 also contained ooids, which are common in shallow-marine 

shoal environments (e.g., Prothero and Schwab, 1996). Markello and Read (1982) place ooid 

shoals in the upper part of the carbonate ramp marginal to the platform.  Flat-pebble 

conglomerates were placed near the top of subtidal succession in the Maynardsville Limestone 

in Tennessee (Glumac and Walker, 2000). 

Unit 1 thins westward before pinching out beneath the Knox Dolomite (Fig. 3.4).  The 

pinchout is either (1) depositional, (2) a truncation by the overlying Knox Group, or (3) could 

possibly represent a dolomitic transition between the Conasauga and the Knox.   
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Similarities Between the Maynardsville Limestone (Unit 1) and Davis Limestone (Lower Knox 

Group)  

 The Maynardsville Limestone is the uppermost Conasauga limestone in the eastern part 

of the study area.  The Maynardsville pinches out to west beneath the Knox Group.  To the west, 

there is a limestone above the Eau Claire Formation and beneath the Knox called the Davis 

Limestone in Indiana (and the DuPont No. 1 WAD fee well).  The Davis in Indiana is within the 

lower part of Knox Group.  Core examined in this thesis in the DuPont well and ODNR DGS 2627 

American Aggregates well (Figs. 3.36, 3.47) are very similar to Maynardsville core in the U.S. 

Chem/U.S. Steel No. 1 well.  Both contain abundant oolitic dolomite or dolomitic limestone and 

thrombolites.  Thrombolites reached their peak abundance during the late Cambrian (Kennard 

and James, 1986), and this could just be repetition of similar facies.  However, the similarity of 

facies might also indicate the possibility that the lower Davis of the Illinois Basin is an equivalent 

of the Maynardsville in the Appalachian Basin. Perhaps, dolomitization during Knox deposition is 

the reason for differences in present stratigraphic correlations, more than distinctly different 

depositional episodes. More work would be needed to test biostratigraphic correlations 

between the units to determine if they are actually correlative.  

Caprock Suitability 

 To qualify as an acceptable confining interval, a formation must have (1) low 

permeability, (2) should be thick, (3) should be laterally continuous, (4) should be relatively 

homogenous, and should be (5) unfractured (Downey, 1994;  Selley, 1998). The depth of the 

reservoir and overlying caprock, permeability of the caprock, and the mechanical integrity of the 

cap-rock are important variables to consider in any injection reservoir (Reichle and others, 1999; 

Bach and Adams, 2003). For effective CO2 storage, the confining interval must also exhibit 
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mineralogy that will not be degraded by interaction with CO2 or acidity produced by CO2 (eg., 

Wickstrom and others, 2005; Neufelder, 2011).  

  This study examined lithology (lateral and vertical variability), thickness, mineralogy, 

and available data on porosity, and permeability of the Eau Claire/ Conasauga interval in the 

study area.  From these results some preliminary assessments can be made of caprock suitability 

above the underlying Mount Simon and or basal sandstone, which can be used in future 

modeling projects. These results also show areas where more data is needed. 

Porosity and Permeability 

 New porosity and permeability data were not collected in this study. However, existing 

data collected from core in regional on-going carbon storage research was collected and 

analyzed relative to the geologic sub-units of the Eau Claire/Conasauga interval correlated in 

this study.  Some modelers have determined that permeabilities of 0.01 md or less prevent 

vertical leakage of CO2 from underground storage reservoirs (e.g., White and others, 2003).  

Others have suggested much smaller permeabilities may be needed. Permeabilities from 10-6 

to10-8 darcys are cited for good caprock in the Schlumberger oilfield glossary( 2012), and 

permeabilities of 10-21to 10-23 m2 [which is 10-12-10-15 md] were cited by Deming (1994) for 

pressure seals that would last for time spans of millions of years.  

Preliminary modeling of the test CO2 injection at the Battelle No. 1 Duke Energy well at 

the East Bend power station in Boone County, showed that the permeabilities recorded in Eau 

Claire core from the well (0.0004 to 0.602 md)( Table 3.8) were sufficient to act as a seal and the 

injection test was permitted.  Injection went as planned, and monitoring since the injection, has 

shown no evidence of leakage from the reservoir (Battelle, 2012). As part of the Arches 

modeling project (Sminchak and others, 2012), analyses of down-hole well logs, existing 
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permeability data in the region, and a few capillary-entry pressure data were used to define an 

average permeability value for regional modeling on the Cincinnati Arch (where the Eau Claire-

Conasauga interval is mostly shale) of 7.6 x 10-5 md, which suggests the unit (where shale rich) 

should be a good seal. Scherer and others (2010) calculated porosities of 1.3274 x 10-5 md 

(13.274 nd), 7.124 x 10-6 md (7.124 nd), and 2.4011 x 10-5 md (24.011 nd) from samples taken 

from core for the Eau Claire Formation in the Battelle No. 1 Duke Energy well, using a beam-

bending method.   

Two values within Units 3 and Unit 7 are higher than 0.1 md.  The two higher values 

from Unit 3 (11.8 md and 0.6 md in Table 3.8) in the Battelle No. 1 Duke Energy well were noted 

as fractured, chipped, or unsuitable for permeability measurement.  Fractured samples are not 

uncommon in shale core, and could be the reason for the higher values. The two relatively high 

values for Unit 7 (0.4 md and 26.8 md) in the U.S. Chem/U.S. Steel No.1 well have no indication 

that they were fractured or damaged.  They are, however, from a potentially sandy zone based 

on the log signature.  Sandy zones in the interval might be expected to have higher 

permeabilities than shales. 

The western part of the study interval is dominated by carbonates in the Maryville 

Limestone of the Conasauga Group.  Although there is no permeability data for this interval, 

porosities on density logs are generally low when looking at available bulk density curves.   

Lithology and Lateral Variability 

 Thick, homogenous shales and anhydrites are the rock types typically associated with 

low-permeability stratigraphic traps or seals in oil and gas reservoirs, although carbonates can 

also be effective seals (Downey and others, 1984).  The Eau Claire/Conasauga interval is not a 

laterally continuous, thick, homogenous shale.  It is shale dominant in the west, carbonate in the 
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east, and is mixed shale and carbonate in between.  Anhydrites are noted in the Maryville 

Limestone in the USS Chem core but are not thick, laterally extensive beds. 

Unit 7 would serve as the primary or immediate seal of an underlying Mount Simon or 

basal sandstone reservoir, since it is at the very base of the Eau Claire/Conasauga interval.  It is 

laterally heterolithic and has some sandy intervals, although it looks like a low porosity unit 

across much of the study area.  The most homogenous shale is in Unit 2, which is equivalent to 

the Nolichucky Shale of the Conasauga (Figure 3.4, 3.5, and 3.6).   

 Unit 1, Unit 3, Unit 4, Unit 5, and Unit 6 all have carbonates within them to various 

degrees both vertically and laterally across the study area.  Carbonates increase in thickness 

eastward to as much as 600ft thick and constitute the dominant lithology.  Observations of 

density porosity logs through the carbonates shows that they appear to have low porosity.   

Thickness of Shales 

 Thicknesses of the shale portion of the Eau Claire/Conasauga interval range from 

approximately 300 ft to more than 500 ft in the western part of the study area.  Many of these 

shales are silty.  Unit 2 (Nolichucky Shale), has the highest gamma readings and in core from U.S. 

Chem/U.S. Steel  No.1 and ODNR DGS 2627 well appears to be more clay rich and less silty (Fig. 

3.52 and 3.53).  Unit 2 ranges from approximately 30 ft to 120 ft It is the first unit with relatively 

uniform lithology (based on log response) over the entire interval.   

Overlying the entire Eau Claire/Conasauga interval is the Knox Supergroup of 

carbonates, which would serve as secondary caprocks, should breached CO2 be able to rise all 

the way through the entire Eau Claire/Conasauga interval.  On the Cincinnati Arch, the base of 

the Knox is near sufficient depth (2,500 ft) to keep CO2 in supercritical conditions.  Laterally off 
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the arch in both directions, that depth increases (Figs. 3.4-3.9), (Greb and others, 2009).  The 

ultimate regional seal in the region is the Upper Ordovician Maquoketa Shale to the east, off of 

the Arch, where it is more than 2,500 ft deep (Greb and Solis, 2009). Eastward in the 

Appalachian Basin, thick shales also occur in Upper Ordovician strata but data is not available to 

determine if they have similar low permeabilities to the Maquoketa.   The next sealing unit is the 

Devonian shale sequence that is present on both sides of the Arch.  

Mineralogy of Caprock  

 Mineralogy is an important component of caprock integrity, especially relative to CO2 

storage. Mineralogies, such as dolomite and calcite can be reactive with sequestered CO2 

(Frailey and others, 2005; Wickstrom and others, 2005).  Caprock studies of the Eau Claire 

Formation in Illinois indicate that Eau Claire shale reactivity is low and limited to the caprock 

interface (Liu and others, 2012).  Neufelder (2011) reported that minerals such as dolomite, 

ankerite, glauconite, calcite, chlorite, and feldspars could be reactive with sequestered CO2 in 

the Eau Claire Formation.  Carbonate and feldspar dissolution are possible reactive components 

of the shale.  Hand-held XRF data collected in this study showed variation in potassium, iron, 

and calcium stratigraphically and geographically within the study interval (Figs. 3.87-3.92).  XRF 

results could help guide future sampling or modeling relative to caprock mineralogy.  Higher 

concentrations of Ca (as CaO) could mean a presence of carbonate minerals.  Higher 

concentrations of K (as K2O) could mean a presence of potassium feldspar, or glauconite.  Higher 

concentrations of Fe (as FeO or Fe2O3 ) could mean the presence of pyrite or glauconite.  Special 

focus was placed on interpreting results from Units 2, 4, and 7, as Unit 7 is the immediate 

caprock over the Mount Simon reservoir, Unit 2 is the thickest, most continuous shale in the 

study interval, and Unit 4 is representative of the interval between.   
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The majority of the Eau Claire Formation is shale and silty shale.  XRF data (Fig. 3.84) and 

thin sections show it is dominated by silica (SiO2), which should be non-reactive to CO2.  

Cements in these shales, however, are variable and sometimes carbonate (Fig. 3.44), which 

could be reactive with sequestered CO2.  To the east, the majority of the Conasauga Group, is 

composed of carbonates, that are potentially reactive to CO2 but also would be buffering to 

acids.  Maryville carbonates are variably dolomitic.  More work is needed on the mineralogy of 

this heterolithic interval. 

Fractures and Faulting 

 Permeability as a function of rock type, assumes no fractures through the lithology.  A 

fracture through an interval with low porosity and low permeability, however, will compromise 

the cap, allowing a pathway through the seal.  Fracture analyses was not part of this study, but 

increased fractures are possible where syn-depositional structural influences are indicated.  

Faults within the Rome Trough were active during deposition of Units 3 through 7.  These units 

thicken greatly across the trough, due to increased accommodation space created by faulting 

(Figs. 3.7, 3.24, 3.25, 3.26).  Units 1 and 2 are more uniformly thick relative to units below them, 

and do not thicken as much over the trough, suggesting the faults were less active towards the 

end of Conasauga deposition (Fig. 3.7).   

Conclusions  

The purpose of this thesis research was to perform a detailed geological study of the 

Eau Claire Formation and equivalent parts of the Conasauga Group in part of the Ohio River 

Valley region in order to better evaluate its suitability as a confining interval for the underlying 

Mount Simon Sandstone and Basal sandstone equivalents. Detailed correlations of subsurface 

data using available geophysical logs, cores, and thin sections and cuttings were used to 
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correlate facies between the Eau Claire Formation in western and central Kentucky and the 

Conasauga Group in eastern Kentucky and neighboring areas.  Additional information on the 

confining potential of the Eau Claire and Conasauga Formations was obtained through available 

permeability data and performing XRF analyses, which were keyed to the correlations.  The 

following conclusions can be made based on the data in this thesis: 

1. Comprehensive correlations between Conasauga Group and Eau Claire Formation were 

created in the study area.  The Eau Claire/Conasauga study Interval was divided into 7 

identifiable units using available geophysical log data. 

2. A new lateral relationship between the Mount Simon Sandstone and basal sands/lower 

Conasauga in Unit 7 was discovered through correlations, in that the basal sands drape 

over the Mount Simon Sandstone from the northern lip of the Rome Trough, until 

pinching out northwestward. 

3. Structural controls on the study interval by the Grenville Front are interpreted for Units 

4 through 7, because of thickness and lithology changes across the Front.  Carbonates of 

Units 4 and 5 are restricted to the area east of the Front.   

4. Similarities between the Maynardsville Limestone of the Appalachian basin and Davis 

Limestone of the Illinois basin suggest that similar shallow-water carbonate facies were 

recurring through this interval or possibly that the part of the Davis Limestone may be a 

Maynardsville equivalent.   

5. The Eau Claire Formation is generally considered to be a good caprock to the east in the 

Illinois Basin.  Modeling for the Arches Simulation project found it would be a good seal 

in part of the arches province.  Westward toward the Appalachian Basin, however, the 

unit is much more heterogeneous; has much more carbonate; and lacks permeability 
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data.  More work is needed on caprock characterization of this interval in the western 

part of the study area.   

6. XRF data was collected on several core and cuttings as an experiment on the usefulness 

of handheld xrf’s for stratigraphic and mineralogic assessment.  Results showed  

variation geographically across the study area, and vertically through the seven units 

within the Eau Claire/Conasauga interval.  Although not necessarily dependable as 

absolute measurements, handheld XRF analysis can detect the presence or absence and 

comparative, relative abundance of an element, which may help future modeling and 

data collection. 

7. TOC data were collected, but very low organic carbon concentrations were indicated. 

8. More sands are present than have been previously been reported in the Eau 

Claire/Conasauga interval.  Sands occur as distinct sandstones and as sandy carbonates. 

These sands are likely equivalent to what Baranoski (2011) considers the Sandusky 

Formation northward in Ohio. More data needs to be collected on the permeability and 

distribution of these sandstones.  
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