Chapter 5: Site Bank Assessment Geologic Data Report, Round 2, 2008 Brandon C. Nuttall, David C. Harris, John B. Hickman, and Michael P. Solis

The coal industry is important to Kentucky as a source of jobs, revenue, and electric-power generation. Current technology and the likelihood of a carbonemissions-constrained future suggest the state needs to be proactive in identifying candidate sites for industrial development that include the potential for local, longterm carbon storage (sequestration). The Commonwealth of Kentucky requested nominations of potential locations for development of coal to liquids or integrated gasification combined-cycle electricity-generating utilities and requested an assessment of carbon-storage possibilities. Nineteen original sites were proposed and assessed in October 2007; these sites are superficially addressed in this report. In December 2007, an additional 26 sites were nominated for evaluation and inclusion in the site bank discussed in this report. Of the 26 sites nominated for this assessment, three were not evaluated because of lack of location data (assumed withdrawn). Twenty-three sites were evaluated by the Kentucky Geological Survey to assess geologic criteria for storage potential for the sites (Fig. 5.1). Sites 2.06 and 2.25 are substantially similar to the previously nominated sites "R" and "F," respectively.

In general, most sites have a potential for carbon storage in at least one deep saline reservoir, often the Ordovician Knox Formation. In addition, other deep formations often underlie a site, but the lack of specific and detailed subsurface and reservoir data constrain primary reliance on these zones. For Knox reservoirs, the primary seal is likely the impermeable carbonates of the Knox itself and Middle and Upper Ordovician shales (Maquoketa). The Devonian New Albany, Ohio, and Chattanooga black shales represent a secondary seal across much of the state.

Final site scores will include nongeologic factors evaluated by other contractors (transportation network, electricity and gas transmission, water supply and transportation issues, and other factors). This report does not incorporate those final scores.

Evaluation Process

Geospatial analysis was accomplished with Arc-Map, a geographic information system software from ESRI. Buffers with radii of 5, 10, 15, and 20 mi were constructed for each nominated site to represent various areas of review. For the 10-, 15-, and 20-mi radii, the Kentucky portion of the area enclosed by the circle was determined. Sites with substantial portions of their areas of review in surrounding states will require interstate assessments for which the Kentucky Geologi-

Figure 5.1. Locations of proposed sites.

cal Survey lacks sufficient data. Table 5.1 summarizes the percentage of each area of review that lies within Kentucky.

For each site, a location map was compiled to show the proposed site bounded by a 15-mi area of review. The maps show surface faults mapped at 1:24,000 scale and the oil (green shading) and gas (red shading) fields (Fig. 5.2). Individual well locations are shown where the existing oil and gas field outlines do not adequately represent recent oil and gas development or where well data are sparse. Wellbores may represent potential leakage pathways for stored CO₂ to be released to the surface. To qualitatively assess this potential, two stratigraphic intervals were selected: the Devonian black shale (Ohio-Chattanooga-New Albany), a regional seal and potential storage target; and the Ordovician Knox Dolomite, a potential regional deep saline reservoir. Figure 5.3 is an example histogram showing total depth for oil and gas wells within 10 mi of the nominated Martiki site (shown in Figure 5.2).

The histogram also shows the distribution of penetrations with respect to the average depth to the top of the Devonian shale (red line) and Knox Dolomite (green line). To facilitate a future site-specific assessment, the existing deep wells were identified and reported.

Potential storage zones for each site were identified by compiling a series of structure maps showing the elevation of the Precambrian basement, Cambrian Mount Simon and Rome Sandstones, Cambrian-Ordovician Knox carbonates, Ordovician Rose Run and St. Peter Sandstones, Devonian Ohio–Chattanooga–New Albany black shale, and deep Pennsylvanian coals (assumed unmineable), in feet with respect to sea level. For example, the structure map on top of the Mount Simon in Figure 5.4 suggests that the Mount Simon is absent at the Martiki site. Other reservoir and seal intervals for each site are summarized in Table 5.2. The availability of nearby seismic-reflection survey data for investigation of the deep geology was considered in the assessment, although no seismic data were in-

terpreted.

Figure 5.5 is an earthquake hazards map based on expected peak ground acceleration (g) with 10 percent probability of being exceeded in 50 yr (U.S. Geological Survey, 2008). The peak ground acceleration is an indicator of the shaking force that a surface structure (pipeline, coal-toliquids plant, or other facility) might experience with a given probability (10 percent) over a specified time. The expected hazard at a particular site increases with increasing ground motion, increasing probability of occurrence, and decreasing time intervals. It should be noted that the 2008 U.S. Geological Survey hazard model was used to maintain consistency with earlier site-bank assessments; new earthquake hazard assessments and seismic risk maps are being compiled by the Kentucky Geological Survey (Wang, 2009).

Table 5.1. Percer	ntage of area of re	eview in Kentucky	for each site.	
Site ID	5 mi %	10 mi %	15 mi %	20 mi %
2.01	100	88	76	71
2.02	95	78	70	64
2.03	100	100	100	100
2.04	100	100	100	100
2.05	100	100	100	100
2.06	44	32	28	28
2.07	83	81	74	66
2.08	51	44	42	45
2.09	100	100	100	99
2.10	100	100	100	99
2.11	100	100	86	77
2.12	100	100	98	89
2.13	100	100	100	100
2.14	100	100	90	79
2.15	100	99	86	77
2.16	100	97	84	77
2.17	97	87	86	86
2.18	100	91	88	88
2.19	67	49	37	33
2.20	44	44	43	44
2.24	93	81	74	67
2.25	100	100	100	100
2.26	51	53	56	56

Legend

Figure 5.2. Location of site 2.01, Martiki, showing oil and gas fields in vicinity.

Figure 5.3. Histogram of total depth for oil and gas wells within 10 mi of the Martiki site (Fig. 5.2).

A decision matrix for scoring and ranking sites was compiled. Table 5.3 shows the criteria, the definition, and scoring rationale for ranking each of the sites. For each site, additional criteria were assessed by staff of the Smith Management Group, and the overall site scores will be included in their final report and are not provided here.

Summary

- Kentucky has a selection of sites across the state that have the potential for geologic storage of CO₂.
- Key assessment parameters include the proximity to earthquake hazard areas and the likelihood of deep saline reservoirs underlying or within a reasonable distance of the site.

- Proposed sites along Kentucky's borders require additional assessment details to incorporate interstate data.
- A full site assessment includes a variety of infrastructure and environmental factors not included in this geologic assessment. See the complete site bank assessment reports online:
 - August 2007, www.energy.ky.gov/NR/ rdonlyres/05D4C7EA-51A9-4034-9021-A526A850F2FA/0/SiteBankReport.pdf (sites not addressed in this current report)
 - June 2008, www.energy.ky.gov/NR/ rdonlyres/4CEFFE45-23D2-4BA6-AB48-473ADC00D582/0/SiteBankII. pdf (sites addressed in this report)

Figure 5.4. Structure on the top of the Cambrian Mount Simon Sandstone (preliminary), a potential deep saline reservoir, showing the 8,000-ft drilling-depth cutoff.

References Cited

- U.S. Geological Survey, 2008, National seismic hazard maps: U.S. Geological Survey, gldims.cr.usgs. gov/website/nshmp2008/viewer.htm [accessed 5/27/2009].
- Wang, Z., 2009, Earthquakes and other geologic hazards: Kentucky Geological Survey, www.uky.edu/ KGS/geologichazards/ [accessed 12/22/2009].

	Average Top of Knox	7,100	6,600	3,600	5,100	1,200	3,200	8,200	1,100
	Average Top of Devonian Shale	2,600	3,500 (ap- proximate base of thrust sheet)	1,200	2,300	shale not present in subsur- face	450	4,100	shale not present in subsur- face
	Seismic Line	none	none	31-1a	31-1b	none	none	231	иопе
	Wells Through Seal	-	ω	22	ß	4	-	0	N
	Primary Seal	Black River, Ordovician shales	Black River, Ordovician shales	Black River, Ordovician shales	Black River, Ordovician shales	Black River, Ordovician shales	Conasauga	Maquoketa, Black River	Black River, Ordovician shales
	St. Peter	yes	absent	yes	yes	absent	ć	yes	absent
ed sites.	Кпох	primary	primary	primary	primary	primary	yes	primary	yes
rlie propos	Rose Run	yes	yes	yes	yes	yes	yes	absent	yes
seals that unde	Rome, Conasauga, Eau Claire	yes	Ċ	yes	yes	yes	yes	yes	yes
and primary	Mount Simon	absent	absent	absent	absent	primary	primary	yes	primary
age targets,	Basal Sand	yes	absent	< 10% sand- stone with > 4% porosity	< 10% sand- stone with > 4% porosity	absent	absent	absent	absent
primary stor	County	Martin	Bell	Morgan	Perry	Washing- ton	Greenup	Hender- son	Mason
e reservoirs,	Site	Martiki	Pine Mountain Regional Industrial Park	Ky. 205 & Mountain Parkway.	Pine Branch	Spring- field- Wash- ington County Com- merce Center	South Shore	Hen- derson County Riverport	Dover, Ky., industrial site
.2. Deep saline	Company	Lexington Coal Co.	Cumberland Valley Area Develop- ment District	Morgan County Gov- ernment	Pine Branch Coal Sales	Hal Goode	George Ar- rington	Henderson County Port Authority	Maysville- Mason County In- dustrial De- velopment Authority
Table 5	Q	2.01	2.02	2.03	2.04	2.05	2.06	2.07	2.08

218

Chapter 5

	Average Top of Knox	6,700	6,700	7,200	7,200	5,550	6,900	6,500	6,000	4,700	4,700
	Average Top of Devonian Shale	3,000	2,800	3,200	2,900	2,600	3,700	3,700	3,500	800	800
	Seismic Line	none	none	none	none	none	FAY- 635, FAY- 639, FAY-640	FAY- 635, FAY-640	FAY- 635, FAY-640	none	none
	Wells Through Seal	3	3	2	2	-	0	0	0	2	-
	Primary Seal	Black River, Ordovician shales	Black River, Ordovician shales	Black River, Ordovician shales	Black River, Ordovician shales	Black River, Ordovician shales	Maquoketa, Black River	Maquoketa, Black River	Maquoketa, Black River	Maquoketa, Black River	Maquoketa, Black River
	St. Peter	yes	yes	absent	absent	yes	yes	yes	yes	yes	yes
ed sites.	Кпох	primary	primary	primary	primary	primary	primary	primary	primary	primary	primary
erlie propos	Rose Run	yes	yes	yes	yes	yes	absent	absent	absent	absent	absent
seals that unde	Rome, Conasauga, Eau Claire	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes
and primary	Mount Simon	absent	absent	absent	absent	absent	yes	yes	yes	absent	absent
age targets,	Basal Sand	< 10% sand- stone with > 4% porosity	yes?	< 10% sand- stone with > 4% porosity	< 10% sand- stone with > 4% porosity	< 10% sand- stone with > 4% porosity	absent	absent	absent	ć	5
primary stor	County	Pike	Pike	Pike	Pike	Knott	Hender- son	Hender- son	Hender- son	Marshall	Marshall
reservoirs,	Site	Big Shoal	airport	Hopkins Branch	Marion Branch	Knott County Industrial	Area A	Area B	Area C	Marshall County– Calvert City	Bailey Port
.2. Deep saline	Company	Summit Engineering Inc.	Summit Engineering Inc.	Summit Engineering Inc.	Summit Engineering Inc.	Summit Engineering Inc.	Penn Virgin- ia Resource Partners	Penn Virgin- ia Resource Partners	Penn Virgin- ia Resource Partners	Mike Miller	Bailey Port Inc.
Table 5	Q	2.09	2.10	2.11	2.12	2.13	2.14	2.15	2.16	2.17	2.18

Site Bank Assessment Geologic Data Report, Round 2, 2008

219

Table £	5.2. Deep salin	e reservoirs,	primary stor	age targets,	and primary	seals that unde	Ilie propos	ed sites.						
Q	Company	Site	County	Basal Sand	Mount Simon	Rome, Conasauga, Eau Claire	Rose Run	Knox	St. Peter	Primary Seal	Wells Through Seal	Seismic Line	Average Top of Devonian Shale	Average Top of Knox
2.191	Tennes- see Valley Authority	Hickman Property	Fulton	Ċ	absent	yes	absent	primary?	absent	Knox car- bonates?	S	DOW-2, DOW- 2a	shale not present in subsur- face	1,950
2.20	George Ar- rington Gen- eral Coal Services, LLC	Big Sandy River	Boyd	yes	primary	yes	yes	yes	yes	Black River, Ordovician shales	D	N43D-1	1,900	5,700
2.21	Greater Owensboro Economic Develop- ment Corp.	Addison	Breckin- ridge				-	not assesse	d; no locat	tion provided				
2.22	Greater Owensboro Economic Develop- ment Corp.	Newman	Daviess				-	not assesse	d; no locai	tion provided				
2.23	Greater Owensboro Economic Develop- ment Corp.	W.R. Grace at Baskett	Hender- son				-	not assesse	d; no locat	tion provided				
2.24	Greater Owensboro Economic Develop- ment Corp.	Tri-State at Ge- neva	Hender- son	absent	yes	sex	absent	primary	yes	Maquoketa, Black River	o	none	4,200	8,000
2.25	Green River Area De- velopment District	Big Riv- ers	Ohio	absent	yes	yes	absent	primary	yes	Maquoketa, Black River	Q	IBK-92	3,000	6,200
2.26	Maysville– Mason County In- dustrial De- velopment Authority	Maysville	Mason	absent	primary	yes	yes	yes	absent	Black River, Ordovician shales	n	none	shale not present in subsur- face	006
¹As of t Interpr€	he date of this letterion of avails	report, there able seismic	were insuffic data was be	ient subsurfs yond the sco	tce data (bor pe of this as	eholes) to proje sessment	ect potential	l storage and	l seals bel	low the Ordovic	ian Knox For	mation for s	site 2.19, Fult	on County.

Figure 5.5. Earthquake hazard map of Kentucky showing expected ground acceleration (g) with 10 percent probability of being exceeded in 50 yr (U.S. Geological Survey, 2008).

Table 5.3. Criteri	Table 5.3. Criteria description and scoring used in decision matrix for site assessment.						
Criteria	Description	Qualifying Criteria	Rationale for Criteria				
2.1	Seismic stability	The proposed site must have low risk from significant seismic events. Proven by supporting geologic data and calculations demonstrating peak ground acceleration less than 20 percent g, with a 10 percent chance of being exceeded in 50 yr. Peak ground acceleration is the most appropri- ate seismic-hazard criterion because of pipeline infrastructure and other shallow subsurface facilities associated with the Site Bank Project. MCE indicates the maxi- mum credible earthquake and is defined as included in this discussion.	See seismic risk map. 5-0.05 g MCE 4-0.10 g MCE 3-0.20 g MCE 0-0.30 g MCE 0-0.50 g MCE				
2.2.1	Oil fields (immiscible EOR potential)	One or more oil fields within 20 mi and less than 2,500 ft depth.	CO_2 injection is a demonstrated technology for enhanced oil recov- ery. Storage of CO_2 when combined with recovery of additional resourc- es is mutually beneficial. 5–One or more oil fields within 20 mi and less than 2,500 ft depth 0–No oil fields within 20 mi and less than 2,500 ft depth				

Chapter 5

Table 5.3. Criteri	ia description and scoring	used in decision matrix for site assessment.	
Criteria	Description	Qualifying Criteria	Rationale for Criteria
2.2.2	Oil fields (miscible EOR potential)	One or more oil fields within 20 mi and 2,500 ft or more in depth.	CO_2 injection is a demonstrated technology for enhanced oil recov- ery. Storage of CO_2 when combined with recovery of additional resourc- es is mutually beneficial. Miscible flooding operations using super- critical CO_2 will sequester greater quantities of carbon than gaseous (immiscible) projects because of the density difference. 5–One or more oil fields within 20 mi and greater than 2,500 ft depth 0–No oil fields within 20 mi and greater than 2,500 ft depth
2.2.3	Proximity to proposed target formation	Although it is not necessary for the target formation to immediately underlie the proposed site for the Site Bank Project facility, it should be close to the proposed site in order to facilitate construction of pipelines or reduce transportation costs. It is preferable for cost and construction con- siderations for the proposed site and the proposed target formation to be as close to each other as possible.	5–Target formation beneath pro- posed plant site 3–Target formation within 5 mi 1–Target formation farther than 5 mi
2.3	Other geologic factors	Comment on other geologic factors that might influence the site.	
2.3.1	Faults	Presence of mapped fault(s) within 10 mi.	Faults can be transmissive or seal- ing and will require further investi- gation. 5–No faults within 10 mi 0–Fault(s) within 10 mi of the site
2.3.2	Organic-rich black shale (speculative)	Known shale gas production within 10 mi, at depths of more than 1,000 ft.	In addition to acting as a reservoir seal, gas-prone areas of shale (par- ticularly the Devonian Ohio–New Albany–Chattanooga black shale) preferentially adsorb CO ₂ , poten- tially displacing natural gas. This may provide a method of offsetting the cost of storage using enhanced gas recovery. 5–Deep shale gas production within 10 mi 0–No deep shale gas production within 10 mi
2.3.3	Unmineable coals	Known coal beds within 10 mi, at depths of more than 1,000 ft.	CO_2 injection into coals for enhanced coalbed methane (natural gas) recovery has been demonstrated. This may provide a method of offsetting the cost of storage using enhanced gas recovery. 5-Deep coal beds within 10 mi 0-No deep coal beds within 10 mi

Table 5.3. Criter	ia description and scoring	used in decision matrix for site assessment.	
Criteria	Description	Qualifying Criteria	Rationale for Criteria
A 2.1	Deep saline reservoir (proven)	Well or core <i>within 1 mi</i> of the proposed site that demonstrates suitable thickness, porosity, and permeability, that is 2,500 to 10,000 ft in depth, and has at least one demonstrated overlying seal at least 20 ft thick.	Current best practice indicates that deep saline formations are likely to have the largest capacity for long-term storage of CO_2 as a supercritical fluid. This criteria is intended to demonstrate the presence and utility of such a zone in the immediate vicinity of the proposed site. 5–Well or core within 1 mi 0–No well or core within 1 mi
A 2.2	Deep saline reservoir (probable)	A well or core that is <i>1 to 15 mi</i> away from the proposed site demonstrates the likeli- hood of suitable porosity or permeability between 2,500 and 10,000 ft depth and indicates 20 ft or more of impermeable seals in the overlying strata.	Current best practice indicates that deep saline formations are likely to have the largest capacity for long-term storage of CO_2 as a supercritical fluid. This criteria is intended to indicate the probable presence and utility of such a zone as demonstrated by one or more wells a reasonable distance from the proposed site. 5–Well or core between 1 and 15 mi 0–No well or core between 1 and 15 mi
A 2.3	Deep saline reservoir (speculative)	A well or core that is <i>15 to 25 mi</i> away from the proposed site indicates that a porous and permeable zone between 2,500 and 10,000 ft depth and with 20 ft or more of impermeable seals in the overlying strata can be inferred to be underlying the pro- posed site.	Current best practice indicates that deep saline formations are likely to have the largest capacity for long-term storage of CO_2 . This criteria is intended to indicate the presence of such a zone is likely, but no well data within a reasonable distance from the proposed site are available on which to base an assessment. 5–Well or core within 15 to 25 mi 0–No well or core within 15 to 25 mi
A 2.4	Demonstrated closure	Sufficient data to show structural closure on primary saline reservoir target <i>within</i> <i>15 mi</i>	Current best practice indicates the presence of a structural closure will limit migration of injected CO_2 . 5–Structural closure on primary target 0–Insufficient closure on primary target
A 2.5	Multiple deep saline reservoirs	Two or more <i>proven</i> or <i>probable</i> saline reservoirs as defined above.	Multiple stacked intervals increases the likelihood of sufficient capacity for storage. 5–Two or more saline reservoirs 0–Fewer than two saline reservoirs
A 2.6	Demonstrated closure	Sufficient data to show structural closure on one or more of the available oil reser- voirs for storage (miscible or immiscible) <i>within 15 mi.</i>	Structural closure will limit migration of injected CO_2 . Additional analysis is required to determine the volume of the closure to its spill point. 5–One or more available reservoirs 0–No structural closure on avail- able reservoirs

Chapter 5

Table 5.3. Criteria description and scoring used in decision matrix for site assessment.					
Criteria	Description	Qualifying Criteria	Rationale for Criteria		
A 2.7	Subsurface activity/ access	The presence of oil and gas fields, under- ground coal mines, or limestone/aggregate quarries within <i>10 mi</i> .	Need to assess potential issues with respect to mining health and safety, ownership and leases of the mineral estate, and potential subsurface access conflicts. 5–No sites within 10 mi 0–Sites within 10 mi		
A 2.8	Well penetrations into primary seal	Number of penetrations through the primary seal of the main target formation within a <i>10-mi area of review</i> .	Wellbores represent potential migration pathways for CO_2 leak- age into underground sources of drinking water or to the surface. Need to assess integrity of the seal with respect to the density (number) of wellbores, their depths, and the possibility of unlocated holes to ensure CO_2 does not leak. 5–Zero to three well penetrations within 10 mi 3–Three to six well penetrations within 10 mi 0–More than six well penetrations within 10 mi		
A 2.9	Availability of seismic- reflection data	Seismic lines within <i>5 mi</i> of the site	Seismic-reflection data are essen- tial for use in assessing the nature and potential integrity of a unit for storage and modeling the geometry of the area of pore space to be contacted by CO_2 1–Seismic lines available within 5 mi 0–No seismic lines available within 5 mi		