The regional project area is located in the lower Ohio River Valley, and includes the
floodplain, the uplands, and the river channel itself. The floodplain is low-lying;
represents an abandoned channel of Green River as it migrated between 14,000 and
13,000 years ago. The uplands are underlain by Pennsylvanian relatively flat-
lying, sorted (poorly graded) materials. Fluvial processes produce moderate sorting;
colluvial processes may be important. Silt, sand, and gravel; thickness uncertain;
forms fan-shaped alluvial-colluvial apron in upland drainage basins. We prefer:
the use of the term colluvial apron to an alluvial fan, because we are:
referring to the depositional process rather than the resultant deposit.

The Quaternary deposits of the area are: a) Sorted loess, formed as outwash of
the Ohio River; overlies older outwash deposits (10 to 15 m) thick; surface:
forms well-developed, swell-and-swale topography on Ohio Valley floor. The top:
soil of the sorted loess is the clay loam. b) Loess-mantled uplands, c) Late
Pleistocene clay loam, d) Dark brown silt loam; thickness uncertain; forms:
zone 12 to 13 m thick; includes Beds at Hubert Court of Ray (1965); forms:
broad, linear trough immediately down valley from the Central Kentucky:
loess-mantled uplands. e) Laterally sorted loess; contacts gradational and:
approximate, mapped on the basis of topographic expression. f) Laterally:
oriented sand flat (Ohio River floodplain); forms flat expanse of silt; thickness:
certain; is sharp, identified by surface topography. g) Laterally oriented sand:
flat (Ohio River floodplain); forms flat expanse of silt; thickness certain; is:
sharp, identified by surface topography. h) Laterally oriented sand flat (Ohio:
River floodplain); forms flat expanse of silt; thickness uncertain; unit:
found on floodplain. i) Laterally oriented sand flat (Ohio River floodplain);:
forms flat expanse of silt; thickness uncertain; unit found on floodplain. j):
Laterally oriented sand flat (Ohio River floodplain); forms flat expanse of:
silt; thickness uncertain; unit found on floodplain. k) Laterally oriented sand:
flat (Ohio River floodplain); forms flat expanse of silt; thickness uncertain;
unit found on floodplain. l) Laterally oriented sand flat (Ohio River:
floodplain); forms flat expanse of silt; thickness uncertain; unit found:
on floodplain. m) Laterally oriented sand flat (Ohio River floodplain);:
forms flat expanse of silt; thickness uncertain; unit found on floodplain.

CONTOUR INTERVAL 10 FEET

The grain size distribution of soils for geotechnical, hydrogeologic, and:
agricultural applications. The grain size distribution of soils is one of the:
primary factors affecting the behavior of soils with respect to compaction,
shrinkage, and swelling. Geotechnical behaviors. Grain size distribution is one:
of the primary factors affecting the behavior of soils with respect to compaction,
shrinkage, and swelling. Geotechnical behaviors. Grain size distribution is one:
of the primary factors affecting the behavior of soils with respect to compaction,
shrinkage, and swelling. Geotechnical behaviors. Grain size distribution is one:
of the primary factors affecting the behavior of soils with respect to compaction,
shrinkage, and swelling. Geotechnical behaviors. Grain size distribution is one:
of the primary factors affecting the behavior of soils with respect to compaction,
shrinkage, and swelling. Geotechnical behaviors. Grain size distribution is one:
of the primary factors affecting the behavior of soils with respect to compaction,
shrinkage, and swelling. Geotechnical behaviors. Grain size distribution is one:
of the primary factors affecting the behavior of soils with respect to compaction,
shrinkage, and swelling. Geotechnical behaviors. Grain size distribution is one:
of the primary factors affecting the behavior of soils with respect to compaction,
shrinkage, and swelling. Geotechnical behaviors. Grain size distribution is one:
of the primary factors affecting the behavior of soils with respect to compaction,
shrinkage, and swelling. Geotechnical behaviors. Grain size distribution is one:
of the primary factors affecting the behavior of soils with respect to compaction,