Flooding is a nearly annual occurrence along the Ohio River. Floods in the late winter or spring, typically caused by snowmelt or heavy rainfall, can be quite destructive. The Ohio River has the potential to flood the low-lying areas along its banks every 10 to 20 years (e.g., 1913, 1945, 1964, 1997), and cover parts of the low terraces. The flooding is typically brief, lasting only a few hours to a few days. However, in some cases, such as the 1937 flood, the waters rose to unprecedented levels, causing widespread damage and loss of life.

Only structures on the highest outwash terraces and the lacustrine terrace (SMITH MILLS) were developed in the mapped area; all others were abandoned. Only structures on the highest outwash terraces and the lacustrine terrace (SMITH MILLS) were developed in the mapped area; all others were abandoned. The low-relief lacustrine terrace is locally very narrow and poorly defined, and is marked by steep escarpments.

The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally. The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally.

The unconsolidated sediments are dominantly controlled by the conditions under which the material was deposited. Low energy environments allow the deposition of fine-grained materials. High energy environments result in the deposition of coarser materials. Grain size distribution is one of the primary factors affecting the behavior and stability of unconsolidated sediments. Geotechnical behaviors.

The unconsolidated sediments are dominantly controlled by the conditions under which the material was deposited. Low energy environments allow the deposition of fine-grained materials. High energy environments result in the deposition of coarser materials. Grain size distribution is one of the primary factors affecting the behavior and stability of unconsolidated sediments. Geotechnical behaviors.

The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally. The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally.

The unconsolidated sediments are dominantly controlled by the conditions under which the material was deposited. Low energy environments allow the deposition of fine-grained materials. High energy environments result in the deposition of coarser materials. Grain size distribution is one of the primary factors affecting the behavior and stability of unconsolidated sediments. Geotechnical behaviors.

The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally. The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally.

The unconsolidated sediments are dominantly controlled by the conditions under which the material was deposited. Low energy environments allow the deposition of fine-grained materials. High energy environments result in the deposition of coarser materials. Grain size distribution is one of the primary factors affecting the behavior and stability of unconsolidated sediments. Geotechnical behaviors.

The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally. The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally.

The unconsolidated sediments are dominantly controlled by the conditions under which the material was deposited. Low energy environments allow the deposition of fine-grained materials. High energy environments result in the deposition of coarser materials. Grain size distribution is one of the primary factors affecting the behavior and stability of unconsolidated sediments. Geotechnical behaviors.

The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally. The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally.

The unconsolidated sediments are dominantly controlled by the conditions under which the material was deposited. Low energy environments allow the deposition of fine-grained materials. High energy environments result in the deposition of coarser materials. Grain size distribution is one of the primary factors affecting the behavior and stability of unconsolidated sediments. Geotechnical behaviors.

The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally. The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally.

The unconsolidated sediments are dominantly controlled by the conditions under which the material was deposited. Low energy environments allow the deposition of fine-grained materials. High energy environments result in the deposition of coarser materials. Grain size distribution is one of the primary factors affecting the behavior and stability of unconsolidated sediments. Geotechnical behaviors.

The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally. The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally.

The unconsolidated sediments are dominantly controlled by the conditions under which the material was deposited. Low energy environments allow the deposition of fine-grained materials. High energy environments result in the deposition of coarser materials. Grain size distribution is one of the primary factors affecting the behavior and stability of unconsolidated sediments. Geotechnical behaviors.

The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally. The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally.

The unconsolidated sediments are dominantly controlled by the conditions under which the material was deposited. Low energy environments allow the deposition of fine-grained materials. High energy environments result in the deposition of coarser materials. Grain size distribution is one of the primary factors affecting the behavior and stability of unconsolidated sediments. Geotechnical behaviors.

The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally. The sharp contact between the lacustrine terrace and the underlying materials is locally sharp, identified by surface topography; floods occasionally.

The unconsolidated sediments are dominantly controlled by the conditions under which the material was deposited. Low energy environments allow the deposition of fine-grained materials. High energy environments result in the deposition of coarser materials. Grain size distribution is one of the primary factors affecting the behavior and stability of unconsolidated sediments. Geotechnical behaviors.